• Title/Summary/Keyword: Hydraulic oil temperature

Search Result 61, Processing Time 0.026 seconds

Implementation of Film Type Sensor for Synthetic Lube Oil and High Pressure Hydraulic Fluid Leak Detection (합성 윤활유 및 고압 작동유 누출감지 필름형 센서의 구현)

  • Park, No-Jin;Yu, Dong-Kuen;Yu, Hong-Kuen
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-271
    • /
    • 2014
  • Chemical sensors are used in various industrial facilities such high-risk and prevent the leakage of substances, important in life and environmental protection and the safe use of industry, used for management. In particular, high-temperature environments such as power generation equipment of the rotating part due to leakage generated by the various oil, power plants Shut Down, fire, work environment (exposure to various chemical solution and gas leak) and various water, air and soil pollution causes. Thus, over the long term through various channels such as crops and groundwater contamination caused by the slow, serious adverse effect on the ecosystem. In this paper, synthetic lube oil and high pressure hydraulic fluid leakage and immediately detect a new Printed Electronic implementation of technology-based film-type sensors, and its performance test. Thus, industrial accidents and environmental pollution and for early detection of problems, large accidents can be prevented. Experimental results of the synthetic lube oil and high pressure hydraulic fluid solution after the contact time depending on the experiment and the oil solution of the sensor material of the conductive porous PE resistance value by a chemical reaction could be confirmed that rapid increase. Also implemented in the film-type oil sensor electrical resistance change over time of the reaction rate and the synthetic lube oil is about 2 minutes or less, the high pressure hydraulic fluid is less than about 1 minute was. Therefore, more high-pressure hydraulic fluid such as a low volatility synthetic lube oils are the resistance change and the reaction rate was confirmed to be the slowest.

A Study of the Variation in Intensifier Performance Characteristics Varying with Pressure and Temperature (압력·온도 변화에 따른 초고압 발생기 성능특성 연구)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1249-1255
    • /
    • 2010
  • An ultra high- pressure system generally consists of a hydraulic power unit, an oil supply unit, an electrical power supply device, and an electrical control device. The hydraulic power unit supplies the hydraulic power to the intensifier to create generate ultra high pressure. The intensifier amplifies increases the pressure using the oil supplied from by the hydraulic power unit. The electrical supply devices and control devices maintain are provided for the electric motors, valves, and sensors. In this study, instead of a flow-control device, a pressure-control type device was mounted on a manifold block in the hydraulic power unit instead of the flow-control type. A servo valve was fitted in the intensifier, and the performance characteristics of the intensifier varied according to the variations of in the pressure cycle and with the temperature of the operating oil in the hydraulic power unit.

THD Analysis of a Hydraulic Servo Valve Using CFD (CFD를 이용한 유압 서보밸브의 열유체 해석)

  • Jeong, Y.H.;Park, T.J.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • Hydraulic servo valves are widely used in various fluid power systems because of their fast response and precision control. In this paper, we studied the effect of metering notch shapes and amount of their openings on the flow characteristics within the spool valve using a computational fluid dynamic (CFD) code, FLUENT. To obtain the results for more realistic operating conditions, viscous heating due to the jet flow and viscosity variation of the hydraulic fluid with temperature were considered. For two types of notch shape, streamlines, oil temperature and viscosity distributions, and variations of flow and friction forces acting on spool were showed. The flow and friction forces affected by the metering notch shapes and their openings, and oil temperature rise near metering notch was significant enough to results in the jamming phenomenon. A thermohydrodynamic (THD) flow analysis adopted in this paper can be used in optimum design of hydraulic servo valves.

A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model (온도.비열 가속모형을 적용한 유압호스조립체 수명특성 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Cho, You-Hee;Sim, Sung-Bo;Kim, Jae-Hoon
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.235-244
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipment such as construction machinery, automobile, aircraft, industrial machinery, machine tools and machinery for ships. Also, they are widely used as pipes in oil pressure circuit. When we estimate their lifetime, it is essential to conduct an accelerated life test by choosing the factor that suits the usage condition of the test object since traditional test method for estimating lifetime under the influence of various external factors incurs hardship in terms of time and expenses. The objective of this study is to propose an acceleration model that takes both temperature and pressure without flexing condition into consideration. The lifetime is estimated by applying the proposed temperature-nonthermal acceleration model to the test data. And we compare the proposed temperature-nonthermal acceleration model and the accelerated life equation suggested by John(1994).

A Numerical Analysis on Transient Temperatures of Fuel and Oil in a Military Aircraft (항공기내 연료 및 오일온도 변화에 대한 수치해석적 연구)

  • Kim, Yeong-Jun;Kim, Chang-Nyeong;Kim, Cheol-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1153-1163
    • /
    • 2002
  • A transient analysis on temperatures of fuel and oil in hydraulic and lubrication systems in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method with modified Dufort-Frankel scheme. Among various missions, air superiority mission was considered as a mission model with 20% hot day ambient condition in subsonic region. The ambience of the aircraft was assumed as turbulent flow. Convective heat transfer coefficient were used in calculating heat transfer between the aircraft surface and the ambience. For an aircraft on the ground, an empirical equation represented as a function of free-stream air velocity was used. And the heat transfer coefficient for flat plate turbulent flow suggested by Eckert was employed for in-flight phases. The governing equations used in this analysis are the mass and energy conservation equations on fuel and oils. Here, analysis of fuel and oil temperature in the engine was not carried out. As a result of this analysis, the ground operation phase has shown the highest temperature and the largest rate of temperature increase among overall mission phases. Also, it is shown that fuel flow rate through fuel/oil heat exchanger plays an important role in temperature change of fuel and oil. This analysis could be an important part of studies to ensure thermal stability of the aircraft and can be applicable to thermal design of the aircraft fuel system.

The Separation of the Vane and the Camring at high speed of an Oil Hydraulic Vane Pump for Automobile (자동차용 유압베인펌프의 고속에서 베인과 캠링간의 이간현상)

  • Cho, Ihn-Sung;Baek, Il-Hyun;Jung, Jae-Youn
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • In an oil hydraulic vane pump for an automobile, it is very important that the vane doesn't separate from the camring inner race during the operation of the vane pump. The vane generally has not only the oil hydraulic force acting on the bottom face to contact to camring inner race but there is also an inertial force and viscous force. Because the oil hydraulic force is much larger than the other forces, the contact state between the vane tip and the camring inner race is sufficient. However, the contact state between the vane tip and the camring inner race is only affected by the inertial and viscous forces during the delivery of the vane pump, because the oil hydraulic force acting on the vane is in equilibrium. If the inertial force is larger than the viscous force, which happens when the vane is separated from the camring inner race, the delivery of the vane pump can become unstable or the volume efficiency can become decrease rapidly. Therefore, in this paper, the state of the contact between the vane and the camring is considered. The results show that the rotating speed of the shaft, the operating temperature of the oil, the clearance between the vane and the rotor, and the mass of the vane exert a great influence on the state of the contact between the vane and the camring.

New leakage detection system for the hydraulic system of EHV underground oil-filled cables (초고압 OF 케이블 급유계통의 조기이상검지시스템)

  • Kim, Y.;Seong, J.K.;Han, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1966-1968
    • /
    • 2000
  • Globally, oil-filled paper-insulated cables and cross-linked polyethylene-insulated cables have been mainly applied for a underground power transmission line. The oil-filled cable has the hydraulic system in which insulating oil, expanded and contracted by temperature changes, is absorbed and supplied. This system enable us to detect oil leakages from the cable. But it has some problems such as difficulty in detecting minor leakages and a relatively long period of fault detecting. And so, this paper introduce a new leakage detection system, improved from the current one.

  • PDF

A Study on the Optimal Design by Changing the Ring Shape of Hydraulic Quick Coupler (유압 퀵 커플러 Ring부의 형상변경을 통한 최적설계에 관한 연구)

  • Lee, Yun-Seung;Kim, Nam-Yong;Lee, Do-Yeong;Cho, Yong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.84-90
    • /
    • 2022
  • Hydraulic coupling systems play an important role in easily connecting or disconnecting pipes or hoses that transmit high-pressure fluids without hydraulic oil leakage in hydraulic power transmission equipment. A flat-face hydraulic quick coupler is a recently developed product that can reduce environmental pollution by minimizing hydraulic oil leakage during connection and disconnection. In this study, the influence of the shape of the inner ring of a 3/8" flat-face hydraulic quick coupler on its internal flow characteristics was analyzed and evaluated by numerical analysis based on computational fluid dynamics. The flow velocity distribution, temperature distribution, and optimal shape design of the inner ring were obtained by comparing the results of the flow characteristics, such as the pressure drop.

A Study on the Lubrication Flow Distribution in a Six-speed Automatic Transmission Valve Body (6속 자동변속기 밸브바디의 윤활오일유량 분배 특성 연구)

  • Kim, Jin-Yong;Na, Byung-Chul;Lee, Kye-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In general, a valve body of the automatic transmission(AT) is controlled by the clutch, the brake and lubricating oil flow in a hydraulic system and lubricant flow for each valve can be adjusted independently. To increase the lifetime of AT, the lubrication flow rate in a valve body for a 6 speed AT based parallel hybrid electric vehicle must be provided with proper oil distribution and control. In this study, we carried out several experiments without the inner parts of AT and with a AT assembly. The variation of the flow rate on oil temperature and pressure between an oil supply port and the outlets of the lubrication port was evaluated and analyzed. In the case of AT without the inner parts, it was evident that as the oil required for an operation of the clutch and brake was discharged from the outlet port, the flow rate from each lubrication port is decreased. However, the flow rate of the AT assembly was slightly increased. In addition, the lubrication flow rate was increased with increasing the oil temperature, and also it was reduced with increasing the oil pressure. Details of the resulting data are discussed.

A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying (초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa;Park, Hui-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.