• Title/Summary/Keyword: Hydraulic model experiment

Search Result 313, Processing Time 0.029 seconds

Hydraulic Characteristics of Surface Irrigation in Paddy Field of Direct Seeding Culture -With paddy field of ridge direct dry seeding- (직파재배 논의 지표관개 수리특성 -건답휴립직파 논을 중심으로-)

  • 정하우;최진용;김대식;박기욱;배승종
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.64-74
    • /
    • 1997
  • The purpose of this study is to analyze hydraulic characteristics of surface irrigation in a paddy field of direct seeding culture. Field experiment was performed in the paddy field of ridge direct dry seeding. Simulation by a numerical model was also accomplished with the data obtained from the field experiment. The model was developed by one dimensional zero-inertia equation and finite difference method. From the result of the field observation, the furrows of the experimental field were found to have various geometric characteristics. Advance distance and time were measured both in the field and by the model simulation for various furrow lengths and irrigation discharges. Roughness coefficients of each furrow were also estimated by the model.

  • PDF

A Study on Control Characteristics of Fluid Power Elevator (유압식 엘리베이터의 제어특성에 관한 연구)

  • Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.41-47
    • /
    • 2003
  • In this study an elevator plant model is made with an electro-hydraulic servo valve and a single rod cylinder. A PID controller, a velocity feedback PID controller and a MRAC controller ate designed. Experimental apparatus including an elevator plant model and these controllers are constructed. In case of experiment, external load which is made with a hydraulic cylinder and a pressure control valve burdens varying load to the elevator plant model being driven. With experiment, the control performances of three proposed control methods are compared.

  • PDF

Hydraulic Model Tests for the Distribution of Wave Height around the Ieodo Underwater Rocks (이어도 주변 파고분포에 대한 수리모형실험)

  • Chun Insik;Shim Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2005
  • The present data concerns the wave height distribution around the Ieodo underwater rocks and it was obtained from a 3D hydraulic model experiment which was performed in 1999 by Konkuk University and Korea Ocean Research and Development Institute. The experiment was separately undertaken for 4 different wave directions (NNW, SE, S, NNW) under which wave heights were measured at every 1m interval within the preset grid area, 16m×18m. It was observed that the wave breaking occurred on the top of the Ieodo model for all wave directions. This data may be effectively used for improving or verifying the performance of numerical wave propagation models in the area with the local breaking wave zones.

Analysis on Dimensional Stability of Porosity Soil Block for Vegetation Reinforcement (식생강화를 위한 다공성 소일 블록의 치수안정성 해석)

  • Park, Sang Woo;Ahn, Tae Jin;Ahn, Sang Ho;Kwon, Soon Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.91-103
    • /
    • 2013
  • In this Research, in order to improve problems of not enough technical validation and structural and hydraulic stability evaluation when nature-friendly revetment block is applied to field, hydraulic stability evaluation according to hydraulic behavior change of porosity soil block for vegetation reinforcement that secures ecological function was reviewed. By selecting object section, numerical analysis and hydraulic model experiments were performed; for numerical analysis, by using 1-dimensional numerical analysis model HEC-RAS and 2-dimensional numerical analysis RMA-2, one-dimensional(1D) and two-dimensional(2D) numerical analysis were performed; by applying Froude's similarity law, reduced-scale hydraulic model experiments according to vegetation existence were performed. In hydraulic model experiment, for validity of experiment result, the result of velocity and tractive force of reduced-scale hydraulic model experiments was converted to prototype so that it can be compared and reviewed under the same condition of one-dimensional(1D) and two-dimensional(2D) numerical analysis result; as a result, it was confirmed that comparatively united result appeared, and by comparing prototype-converted tractive force result with revetment's allowable tractive force coming from an existing research, block's hydraulic stability was suggested.

Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone (원뿔형 벤츄리수로의 수리특성)

  • Kim, Dae Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type (선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구)

  • Yi, Jong-ju;Ahn, Kang-su;Sur, Jong-mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.

Behavior Characteristics of Density Currents Due to Salinity Differences in a 2-D Water Tank

  • Lee, Woo-Dong;Mizutani, Norimi;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.261-271
    • /
    • 2018
  • In this study, a hydraulic model test, to which Particle Image Velocimetry (PIV) system applied, was used to determine the hydrodynamic characteristics of the advection-diffusion of saltwater according to bottom conditions (impermeable/permeability, diameter, and inclination) and the difference of the initial salt. Considering quantitative and qualitative results from the experiment, the characteristics of the density current were discussed. As an experimental result, the advection-diffusion mechanism of salinity was examined by the shape of saltwater wedge and the flow structure of density currents with various bottom conditions. The vertical salt concentration obtained from the experiment was used as quantitative data to calculate the diffusion coefficient that was used in the numerical model of the advection-diffusion of saltwater.

Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature (하천 만곡률과 홍수량에 따른 수면경사도 산정)

  • Choi, Han-Kyu;Lee, Mun-Hee;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

Numerical Simulation of Nearshore Current Field - Application to structure of offshore breakwater construction - (해빈류장의 수치 시뮬례이션 - 이안 구조물 건설에의 적용 -)

  • 박종화;이순혁
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.305-310
    • /
    • 1998
  • This research conducted concerning measures for the influence reduction to an investigation in the structure of offshore breakwater maintenance, an evaluation, a reexamination of the forecast, and a peripheral sediment transport environment. Furthermore, it aimed at the establishment of the beach transformation forecast method based on a hydraulic model study and a numeric simulation. A good result was obtained from a hydraulic model experiment and a numeric simulation as part of the basic research. And a qualitative evaluation of the flow field around the structure became possible since a numeric simulation examined flow field characteristics.

  • PDF

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.