• 제목/요약/키워드: Hydraulic loss

검색결과 397건 처리시간 0.024초

수두손실률, 투수계수 및 공극비의 상호관계를 통한 제체의 다짐상태 평가 (The Estimation of Compacted State on Sea Dike Embankment with the Interrelationships Between the Hydraulic Head Loss Rate, the Hydraulic Conductivity and the Void Ratio)

  • 임성훈
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.11-23
    • /
    • 2015
  • In this study the laboratory test for hydraulic conductivity and the seepage analysis with finite element method on measurement section of sea dike embankment were performed for the purpose of estimating the relative density of embankment from the measured pore water pressures, and both results of the test and the analysis were coupled with the method of estimating seepage blocking state with the hydraulic head loss rate in sea dike embankment. The relationship of void ratio vs hydraulic head loss rate was obtained by setting hydraulic conductivity as common ordinate on the relationships between the void ratio and the hydraulic conductivity and between the hydraulic conductivity and the hydraulic head loss rate. The void ratio on the segment between measuring points was calculated from the coupled relationship of the void ratio vs the hydraulic conductivity. The allowable upper and lower limits of hydraulic head loss rate and those of void ratio on the safety were generated from the coupled relationship between the laboratory compaction test and the sedimentation test. Current hydraulic head loss rate and void ratio were evaluated in the allowable range between upper and lower limits.

정규화된 수두손실률에 의한 방조제 구간별 차수상태 평가 (The Estimation of Seepage Blocking State with the Normalized Hydraulic Head Loss Rate at Each Seepage Segment in Sea Dike Embankment)

  • 임성훈;허건
    • 한국농공학회논문집
    • /
    • 제56권6호
    • /
    • pp.159-167
    • /
    • 2014
  • In this study the process of normalizing hydraulic head loss rate was developed for the purpose of estimation of seepage blocking state at each seepage segment in sea dike embankment. Pore water pressure sensors were installed with some interval along seepage path, then the hydraulic head loss rate at each segment between pore water pressure sensors was calculated, and then the calculated hydraulic head loss rate was normalized based on seepage path length. The comparison of normalized hydraulic head loss rates showed that the cross section of sea dike embankment was homogeneous approximately and the width of cross section was long enough to blocking tide water.

수두손실률에 의한 방조제 침투류 감시 및 해석 기법 개발 (Development of Seepage Monitoring and Analysis Method with the Hydraulic Head Loss Rate in Sea Dike)

  • 임성훈;허건
    • 한국농공학회논문집
    • /
    • 제56권6호
    • /
    • pp.1-9
    • /
    • 2014
  • In this study the pore water pressures were measured in sea dike constructed with the sand dredged in the sea, and they were analyzed with the hydraulic head loss rate to estimate quantitatively the state of blocking seepage in the sea dike embankment. Blocking state was expressed as the number between 0 and 1. the number of 1 means the state of perfectly blocking seepage and the number of 0 means the state of sea water being passing free. The deeper the installed position was the lower the hydraulic head loss rate was and the longer the seepage path length was the higher the hydraulic head loss rate was. The estimated R-squareds were close to 1, which means that the embankment was steady state without movement of soil particles.

수두손실률의 경시변화에 의한 방조제 제체의 점진적인 차수상태 변화 감시 (The Monitoring on Gradual Change of Seepage Blocking State with the Hydraulic Head Loss Rate Change According to Passage of time in Sea Dike Embankment)

  • 임성훈
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.1-9
    • /
    • 2015
  • In this study it was adopted on sea dike monitoring that the safety monitoring with statistical limits which was adapted usually on safety monitoring by measuring pressures, stresses or deformations. And also the hydraulic head loss rate change according to passage of time was calculated for the purpose of safety monitoring. Safety monitoring by setting the statistical limit on the measured pore water pressure graphs need to be supplemented with an additional method of monitoring because the difference between the rise and fall of the tide was irregular. Safety monitoring by the limits set from values predicted by linear regression and standard errors on the hydraulic head loss graph was not affected by irregularity of tide. But if the condition of an embankment is changed gradually and slowly, it will not be detected on the hydraulic head loss graph. The graph of hydraulic head loss rate for every 24 hours vs date showed clearly that the sea water blocking state was getting better or not even though it was changed gradually and slowly.

Flow Distribution and Pressure Loss in Subchannels of a Wire-Wrapped 37-pin Rod Bundle for a Sodium-Cooled Fast Reactor

  • Chang, Seok-Kyu;Euh, Dong-Jin;Choi, Hae Seob;Kim, Hyungmo;Choi, Sun Rock;Lee, Hyeong-Yeon
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.376-385
    • /
    • 2016
  • A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and $60^{\circ}C$ (equivalent to Re ~ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.

수두손실률에 의한 방조제 침투류 감시기법 개발 (Development of the Seepage flow Monitoring Method by the Hydraulic Head Loss Rate on Sea Dike)

  • 임성훈;윤창진;김성필;허준;강병윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.60-68
    • /
    • 2010
  • In this study, the seepage flow monitoring method by hydaulic head loss rate graph was developed for the purpose of monitoring the seepage flow from the see side or from the lake on sea dike in which seepage force was varied periodically. The hydraulic head loss rate was defined in this method. The value of the rate is in the range from 0 to 1. the value of 0 means perfectly free flow of seepage. the value of 1 means perfect waterproofing. The value of coefficient of determination in the hydraulic head loss rate graph closer to 1 means that the seepage flow way is stable. The value of coefficient of determination in the hydraulic head loss rate graph closer to 0 means that the hole may exist or the piping may be in the progress. The pore water pressure data measured in Saemangeum sea dike was analyzed with the developed method The result showed that the variation of seepage flow state was detected sensitively by this method and the interception effect of sea dike could be estimated quantitatively.

  • PDF

필터재의 입도범위와 작용수압에 따른 성토재의 유실 특성 (Characteristics of Volume Loss for Base Materials with Different Hydraulic Pressures and Filter Grain Size)

  • 송창섭;인현식
    • 한국농공학회지
    • /
    • 제45권3호
    • /
    • pp.65-72
    • /
    • 2003
  • The objective of this study is to evaluate the stability of the design criteria recommended by Betram and Terzaghi as compared with the experimental result. A series of NEF tests was conducted to determine the loss of volume in base soils. The three kinds of base soils classified as CL, SC and SM are used for the NEF tests with various hydraulic pressures and filters following upper and lower bond of the criteria. Volume loss characteristics of the base soils was examined closely by the results of the test successfully. Firstly, it was found that the loss of base soils was mostly eroded at the first stage of seepage. Secondly, the amount of loss volume was ranked CL > SM > SC in order of their amounts for upper criteria, and SM > CL > SC orderly for lower criteria. Thirdly, the volume loss of all soils was increased with increasing the hydraulic pressures. And lastly, the needs of the new design criteria was proved for the control of seepage and piping.

소형 터보펌프에 대한 실험적 평가와 성능해석 (Experimental Evaluation and Performance Analysis for a Mini Turbo-pump)

  • 김수원;박무룡;황순찬;오형우;윤의수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.54-60
    • /
    • 2002
  • A mini turbo-pump having 44mm diameter impeller for hydraulic power control have been tested to evaluate hydraulic performance and losses. The characteristics of the losses such as mechanical, friction, balancing rib losses were investigated. The investigation revealed that the friction loss is relatively large but the balancing rib loss small. It was found that the hydraulic efficiency of the pump at design point is very low($27\%$) due to low specific speed and large friction losses. A computational fluid dynamics(CFD) method also has been utilized for performance prediction of the mini turbo-pump to compare the computed results with the test data.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.498-507
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1502-1511
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF