• Title/Summary/Keyword: Hydraulic experiment

Search Result 832, Processing Time 0.029 seconds

Post Test Analysis of the Phebus FPT1 Experiment

  • Cho, Song-Won;Park, Jong-Hwa;Kim, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.88-103
    • /
    • 1999
  • The purposes of this study are to understand the severe accident phenomena, to establish the simulation method for the experimental test, and to assess the current models in MELCOR for future improvement. This paper presents the results of the PHEBUS FPT1 post test analysis using MELCOR computer code, version 1.8.4. The entire PHEBUS facility has been modeled; the core, the primary circuit including the steam generator, and the containment vessel. Both the thermal hydraulic and the fission product behavior have been investigated. The code simulation results of the thermal hydraulic behavior show good agreement with the experimental data, The fission product release and transport are calculated using the CORSOR models in MELCOR code and the results will be compared with the experiment when the experimental data are available.

  • PDF

Study of Internal Flow in the supersonic Nozzle by the Hydraulic Analogy (수력학적 상사를 적용한 초음속 노즐 내부 유동 연구)

  • Lee, Ji-Hyung;Lee, Kyung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.477-482
    • /
    • 2009
  • Though rocket nozzle flow is very important to the rocket performance, the direct measurement is very difficult because of high temperature and high pressure gas flow. Then the experiment utilizing the hydraulic analogy has been developed for such a problem. Supersonic flows through an axisymmetric De Laval nozzle of solid rocket motor was simulated in a 2-D sluice-type water-table designed and manufactured utilizing hydraulic analogy. Methods to minimize or account for non-analogous effects in the hydraulic system must be reviewed for the quantitative application of the hydraulic analogy. In this application the water table is inclined slightly, so that gravity acceleration has a small component in the direction of motion, thus compensating for the effect of friction. Flow visualization leads to better understanding of the analogous system. Within the experimental errors, it is shown that the hydraulic analogy can be used as an effective tool for the study of two dimensional isentropic flows of gases in many fields.

  • PDF

Spillway Design by Using Hydraulic and Numerical Model Experiment - Case Study of HwaBuk Multipurpose Dam (수리 및 수치모형실험을 이용한 여수로 설계 - 화북다목적댐)

  • Kim, Dae-Geun;Choi, Ji-Woong;Kim, Chang-Si;Lee, Ji-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.179-188
    • /
    • 2005
  • This study on the HwaBuk Multipurpose Dam showed that two- and three- dimensional numerical model experiments, as well as hydraulic model experiments, can be useful analysis tools for engineers. A commercially available RMA2, which solves the shallow water equations, and FLOW-3D, which solves the Reynolds averaged Navier-Stokes equations, were used to simulate the hydraulic model setup. Numerical simulation results on the following were compared with the hydraulic model results: the flow in the reservoir basin and the approaching channel; the discharge in the overflow weir; the water surface profiles in the rollway, chute, and stilling basin; and the pressure distributions in the rollway. It was shown that there is a reasonably good agreement between the numerical model and the hydraulic model for the most of computations. There were, however, some differences between the numerical simulation results and hydraulic model results for the hydraulic jump in the stilling basin because of air entrainment effect.

Effects of Oxygen Transfer Rate of a Polystyrene Foam Bead Media in a Packed Column Aerator (Packed Column 에어레이터에서 매질로 이용한 발포스티로폼 입자의 산소 전달 효과)

  • 박정환;김유희;조재윤
    • Journal of Aquaculture
    • /
    • v.13 no.3
    • /
    • pp.267-275
    • /
    • 2000
  • To evaluate the characteristics and efficiency of oxygen transfer rate of a polystyrene foam bead as media in a packed column aerator was tested. This media has more surface area and cheaper than other ordinary plastic media. The polystyrene foam media was a sphere-shaped bead with 2.5 mm in diameter and specific surface area was 1,350 $m^2$/$m^3$. Oxygen transfer rate and standard aeration efficiency were tested under different hydraulic loading rates, depths of the media and temperatures. Experiment 1 was performed using a small packed column aerator with 10 cm in diameter and 1 m in length. The aerator filled with 0, 4.5, 9.0 and 18.0 cm of the media was tested under hydraulic loading rates of 2.0, 4.0 and 5.6 $m^3$/$m^2$/min at temperatures of 20, 25 and 3$0^{\circ}C$, respectively. In this experiment, standard oxygen transfer rate (SOTR) increased with the hydraulic loading rate and depth of the media increased. The maximum SOTR was reached at 5.6 $m^3$/$m^2$/min of hydraulic loading rate with 9 cm in depth of the media. However, standard aeration efficiency (SAE) decreased with the hydraulic loading rate increased because electricity consumed by pump increased as hydraulic loading rate increased. The highest SAE was reached at hydraulic loading rate of 2.0 $m^3$/$m^2$/min with 9.0 cm in depth of the media. Therefore, the highest SOTR and SAE were achieved at 9.0 cm in depth of the media regardless of the hydraulic loading rate. The maximum SAE was about 1.8 kg $O_2$/kW-hr with the hydraulic loading .ate of $m^3$/$m^2$/min at temperature of 20 $^{\circ}C$.Experiment 2 was performed using a larger aerator, 20 cm in diameter with 2 m in height. The aerator filled with 0, 9, 18, 27 and 36 cm of the media was operated under hydraulic loading rate of 2.0, 4.0 and 5.6 $m^3$/$m^2$/min at temperature of 27 $^{\circ}C$. The SAE reached to the highest efficiency (1.9 kg $O_2$/kW-hr) at 2.0 $m^3$/$m^2$/min of hydraulic loading rate and 36 cm in depth of the media. According to the above results, the polystyrene foam bead as a media in a packed column aerator was effective to increase oxygen transfer rate.

  • PDF

An Experimental Study for the Hydraulic Characteristics of Vertical lift Gates with Sediment Transport (퇴적토 배출을 수반한 연직수문의 수리특성에 관한 실험적 연구)

  • Choi, Seung Jea;Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.246-256
    • /
    • 2018
  • In order to analyze hydraulic characteristics of discharge coefficient, hydraulic jump height, and hydraulic jump length, accompanied sediment transport, in the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and hydraulic characteristics were schematized according to the presence and absence of sediment transport; the correlation of hydraulic characteristics and non-dimensional parameters was analyzed and multiple regression formulae were developed. In the hydraulic characteristics accompanied the sediment transport, by identifying the aspect different from the case that the sediment transport is absent, we verified that it is necessary to introduce variables that can express the characteristics of sediment transport. The multiple regression equations were suggested and each determination coefficient appeared high as 0.749 for discharge coefficient, 0.896 for hydraulic jump height, and 0.955 for hydraulic jump length. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on hydraulic characteristics of discharge coefficient, hydraulic jump height and length.

Experimental Study on the Characteristics of Flowrate for the Intake System using the Filter Block (필터 블록을 이용한 하천용수 취수시스템의 유량특성에 관한 실험적 연구)

  • Kim, Hyung Suk;Park, Moonhyeong;Kim, Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1247-1257
    • /
    • 2015
  • The river water intake system composed of the filter block, without installation of weirs in a channel, was proposed. To apply it to rivers, analysis of hydraulic characteristics is needed. In this study, the hydraulic experiment on the characteristics of flowrate passing through the river water intake system was carried out. The filter block was produced using riprap and stainless steel bead at the channel bottom. The experiment was carried out under various flow conditions and the flowrate passing through the intake system was measured. As the water depth approaching the intake system became deeper, the flowrate diverting to the intake system increased. As the Froude number increased, the flowrate diverting to the intake system decreased. The same trend was shown regardless of the characteristics of a filter block in the intake system. A constant discharge coefficient was shown regardless of the Froude number but it changed according to the size of a riprap and a stainless steel bead in the filter block. It was found that the discharge coefficient increases with the 0.6 power of the material size.

Efficiency of Livestock Farming Wastewater Treatment by Trickling Filters (撒水濾床法에 依한 畜産廢水의 處理效果에 관한 연구)

  • Ahu, Soo Mi
    • Journal of Environmental Health Sciences
    • /
    • v.11 no.2
    • /
    • pp.17-27
    • /
    • 1985
  • The objectives of this study is to examine efficiency of swinery wastewater treatment by trickling filters' pilot plant. The results of this study are as follows: 1. The characteristics of sample. The BOD$_5$ was from 2,450 to 2,880mg/l, COD(KMnO$_4$ acid method) was from 910 to 1,064mg/l, and SS was from 920 to 990mg/l. The pH of influent was from 7.3 to 7.6, and the temperature of water was from 17.0$\circ$C to 22.5$\circ$C. 2. For experiment by recirculation, the BODs removal efficiency is 65.2% at recirculation ratio (r)=0, and 70.7% at r=1. The ramoval efficiency of this study is higher than NRC formula of U.S.A.. The recirculation is not significant effect on removal efficiency. 3. For experiment by hydraulic load, the BOD$_5$ removal rate decreased from 73.1% at $3.1m^3/m^2\cdot d$ to 65.3% at $9.2m^3/m^2\cdot d$. The design formula of this study which shows the removal rate of soluble BOD is $Le/Li =10^{-0.24} D/Q^{0.24}$ (Q: hydraulic load, D: depth of filter). 4. For experiment by organic load, the BOD$_5$ removal rate is increased from 70.2% at $0.77kg/m^3\cdot d$ to 75.4% at $4.28kg/m^3\cdot d$. We can obtain the straight line y=0.749 x (y: removed BOD, x :applied BOD) by the least squares method. 5. We can know that trickling filters is strong with the hydraulic load and the organic matter shock load. Here, we can judge that trickling filters is a good method for the treatment of swinery wastewater which containing high concentrated organic matter.

  • PDF

Treatment Efficiency of Non-Point Source Pollutants Using Modified Filtration System (개선된 여과형 시설의 비점오염물질 처리효율 평가)

  • Kang, Hee-Man;Choi, Ji-Yon;Kim, Lee-Hyung;Bae, Woo-Keun
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • The objective of this study was to evaluate the efficiency of a modified filtration system treating non-point source (NPS) pollutants. The developed Best Management Practice (BMP) technology was designed based on the geographical and climatic characteristics of the site. A lab-scale test experiment was conducted using three different hydraulic loading rates representing the first flush flow, average flow and overflow conditions during a rainfall event. Water quality analysis was performed on the water samples taken at the inflow, outflow and infiltration during the test experiment of the lab-scale BMP. Also, the water and mass balance at different hydraulic loading rates was determined. Results from the lab-scale test experiment showed that the lab-scale BMP had a high removal efficiency of 80-90% for all NPS pollutants. The overflow test condition obtained the lowest removal efficiency among the hydraulic loading rates because it gave less opportunity for the pollutants to be filtered and retained inside system. The infiltration ratio was approximately 1 % of the inflow and outflow. Increasing the infiltration ratio requires technical approach of soil amendment where the BMP is installed.

Experimental study on the discharge coefficient of slope-type and step-type weirs (경사형 및 계단형 보의 유량계수 산정을 위한 실험연구)

  • Kang, Joon Gua;Kim, Jong Tae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.961-969
    • /
    • 2016
  • Due to the recent requirement of installing low-head structures considering environmental aspects, various types of fixed weir have been suggested. However, the design guideline of transverse structures for practical application is very limited. The purpose of the present study is to analyze the hydraulic properties of the fixed weirs installed at the small and middle sized rivers of Korea depending on the physical specifications to provide fundamental data that may be reflected to the design of a low-head fixed weir considering the relevant environmental aspects. The basic discharge coefficient of slope-type and step-type weirs depending on change of crest was estimated, and a stage-discharge curve was developed. In addition, the flow properties under free flow and submerged flow conditions were analyzed by varying the hydraulic conditions such as discharge and crest.

Assessments of RELAP5/MOD3.2 and RELAP5/CANDU in a Reactor Inlet Header Break Experiment B9401 of RD-14M

  • Cho Yong Jin;Jeun Gyoo Dong
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.426-441
    • /
    • 2003
  • A reactor inlet header break experiment, B9401, performed in the RD-14M multi channel test facility was analyzed using RELAP5/MOD3.2 and RELAP5/CANDU[1]. The RELAP5 has been developed for the use in the analysis of the transient behavior of the pressurized water reactor. A recent study showed that the RELAP5 could be feasible even for the simulation of the thermal hydraulic behavior of CANDU reactors. However, some deficiencies in the prediction of fuel sheath temperature and transient behavior in athe headers were identified in the RELAP5 assessments. The RELAP5/CANDU has been developing to resolve the deficiencies in the RELAP5 and to improve the predictability of the thermal-hydraulic behaviors of the CANDU reactors. In the RELAP5/CANDU, critical heat flux model, horizontal flow regime map, heat transfer model in horizontal channel, etc. were modified or added to the RELAP5/MOD3.2. This study aims to identify the applicability of both codes, in particular, in the multi-channel simulation of the CANDU reactors. The RELAP5/MOD3.2 and the RELAP5/CANDU analyses demonstrate the code's capability to predict reasonably the major phenomena occurred during the transient. The thermal-hydraulic behaviors of both codes are almost identical, however, the RELAP5/CANDU predicts better the heater sheath temperature than the RELAP5/MOD3.2. Pressure differences between headers govern the flow characteristics through the heated sections, particularly after the ECI. In determining header pressure, there are many uncertainties arisen from the complicated effects including steady state pressure distribution. Therefore, it would be concluded that further works are required to reduce these uncertainties, and consequently predict appropriately thermal-hydraulic behaviors in the reactor coolant system during LOCA analyses.