• Title/Summary/Keyword: Hydraulic driving

Search Result 245, Processing Time 0.029 seconds

Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester (무·배추 수확 작업을 위한 다목적 주행플랫폼 개발)

  • H. N. Lee;Y. J. Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.

A Study on the Selection Method of Parameters for Energy Saving in Pneumatic Cylinder Driving Apparatus (소비에너지 절약을 위한 공기압 실린더 구동장치의 파라미터 선정방법)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.60-65
    • /
    • 2012
  • Pneumatic actuators are clean, lightweight, and can be easily serviced, whereas low energy efficiency has been considered as a critical shortcoming compared with corresponding hydraulic and electrical actuators. This study describes a new design method of pneumatic cylinder driving apparatus by lowering a supply pressure. The simulation study demonstrates that the designed system with the proposed method can operate at the smaller energy consumption state compare to the designed system with the conventional method for the specified working conditions.

Fuzzy Logic Slip Control of Torque Converter Clutch System for Passenger Car Considering Road Grade Resistance (노면 경사부하를 고려한 승용차용 토크컨버터 클러치 시스템의 퍼지 슬립 제어)

  • Han, Jin-O;Sin, Byeong-Gwan;Jo, Han-Sang;Lee, Gyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.718-727
    • /
    • 2000
  • Nowadays, most passenger cars equipped with automatic transmissions use torque converter clutches to reduce fuel consumption, and recently the slip control scheme of torque converter clutches is widely studied for the expansion of the operating region of torque converter clutches and thus for the further improvement of the fuel economy of vehicles. In this study, the analysis of the torque converter clutch system including the line pressure control unit of the automatic transmission and the actuating hydraulic control unit of the torque converter clutch is performed, and a feedforward controller and a fuzzy logic controller for its slip control are proposed. Also, for the slip controller to use the grade resistance information during control, an observer-based grade resistance estimator is designed. The performance of the designed grade resistance estimator and the slip controller is verified by dynamic simulations, and the effect of the torque converter clutch slip control on the fuel economy is examined using a driving cycle simulation.

Generation of Displacement Signal for Realizing Road Profile using the Accelerometer (가속도계를 이용한 노면형상재현 변위신호 생성)

  • Kim, Jong-Tye;Kim, Cheol-Woo;Kim, Taek-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • In the recent years, it is important to evaluate the durability and the reliability of the vehicle, aircraft, and structure. Especially, in case of the vehicle, the durability and reliability are tested by driving test after making prototype vehicles. However, these methods require many costs and efforts for the experiment are needed to react the defects of product. This problems can be settled by simulator which supplies the realistic environments. In this parer, four-axial road simulator with hydraulic power and driving program to operate are made up. The displacement road profile is realized by accelerometers. For the verification the real-vehicle experiment is executed and road profile obtained from the experiment is verified by four-axial road simulator.

Energy Flow Analysis of Working and Driving System of a Wheel Loader (휠로더 주행 및 작업시스템의 동력흐름 분석)

  • Oh, K.S.;Kim, H.K.;Yi, K.S.;Ko, K.E.;Kim, P.Y.;Seo, J.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2014
  • This paper presents simulation-based analysis of energy flow of a wheel loader. The objective of this study is to analyze the energy flow of a wheel loader during driving and working. Because the wheel loader powertrain consists of a mechanical and hydraulic powertrain, the generated power from the engine is divided into 2 powertrains. Further, a virtual prediction of energy flow in the powertrains is a key factor in terms of optimal design. Accordingly, the simulation model that is able to predict the virtual energy flow is developed and analyzed in this study. The proposed wheel loader simulation model has been constructed in the Matlab/Simulink environment. It is expected that the developed simulation model will analyze the energy flow and efficiency in the design stage.

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.

Transient Characteristic Analysis on the Regenerative Braking System of Fuel-cell Electric Vehicle with Electro-Hydraulic Brake (전기유압식 브레이크를 장착한 연료전지차량의 회생제동 천이구간 특성해석)

  • Choi, Jeong-Hun;Cho, Bae-Kyoon;Park, Jin-Hyun;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Nowadays, various researches about eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. Since most of these green cars have electric motors, the regenerative energy technology can be used to improve the fuel economy and the energy efficiency of vehicles. The regenerative brake is an energy recovery mechanism which slows a vehicle by converting its kinetic energy into electric energy, which can be either used immediately or stored until needed. This technology plays a significant role in achieving the high energy usage. However, there are some technical problems for controlling the regenerative braking and the electro-hydraulic brake during switching at transient region. In this paper, the performance simulator for fuel-cell vehicle is developed and transient response characteristics of the regenerative braking system are analyzed in the various driving situations. And the hardware-in-the-loop simulation of electro-hydraulic brake is performed to validate the transient characteristics of the regenerative braking system for fuel-cell electric vehicle.

A Study on Pick-up Device of Beep Sea Manganese Nodules Collector (심해저 망간단괴 집광기의 채집장치에 관한 연구)

  • Hong, Sub;Sim, Jae-Yong;Lee, Tae-Hee;Choi, Jong-Soo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.891-895
    • /
    • 1996
  • Performance and efficiency of hybrid (hydraulic-mechanical) pick-up device of deep sea manganese nodules collector are very sensitive to altitude and altitude of pick-up head relative to undulating seafloor. For this reason, motion control of pick-up head relative to the changing deep sea topography and other disturbances is of particular importance in design of pick-up device. The concept of design axiom is applied to a pick-up device of hybrid type. Kinematic analysis conducted in absolute Cartesian coordinates gives position, velocity, and acceleration of the hydraulic cylinders which enable the pick-up head to keep the preset optimal distance from seafloor. Inverse dynamic analysis provides the driving forces of hydraulic cylinders and the reaction forces at each joint. Design sensitivity analysis is performed in order to investigate the effects of possible design variables on the change of the maximum strokes of hydraulic cylinders. The direct differentiation method is used to obtain the design sensitivity coefficients.

  • PDF

Comparison of Simulation Models for Train Buffer Couplings (연결기용 완충기의 시뮬레이션 모델 비교)

  • Jang, Hyeon-Mog;Kim, Nam-Wook;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2010
  • Coupling systems for trains need more complicated buffer equipments than existing systems because the recent tendency of the regulations enforces trains to be safe for collisions even when the driving speed is higher than before. Using hydraulic buffer is an effective way to satisfy the requirement while it causes the increase of the cost for the coupling system. In this study, we introduce the methodology to build a simulation model for the hydraulic buffer, which could be installed into the coupling systems. In the simulation model of the hydraulic buffer, the reacting force is determined by both buffer stroke and speed whereas the elastic buffer model is designed by using only the buffer stroke in other studies. The simulation results with the advanced hydraulic buffer model shows that the simulating results can be close the real experimental results around 10%, and, if we considers friction forces, the simulation calculates the maximum force within 10% comparing to the experimental.

Robust Design of Main Control Valve for Hydraulic Pile Hammer Flexible Control System

  • Guo, Yong;Hu, Jun Ping;Zhang, Long Yan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.28-38
    • /
    • 2016
  • The flexible control system for hydraulic pile hammer using main control valve is present to the requirement of rapidly reversing with high frequency. To ensure the working reliability of hydraulic pile hammer, the reversing performance of the main control valve should commutate robustness to various interfere factors. Through simulation model built in Simulink/Stateflow and experiment, the effects of relative parameters to reverse performance of main control are analyzed and the main interfere factors for reversing performance are acquired. Treating reverse required time as design objects, some structure parameters as control factors, control pressure, input flow and gaps between spool and valve body as interfere factors, the robust design of the main control valve is done. The combination of factors with the strongest anti-jamming capability is acquired which ensured the reliability and anti-jamming capability of the main control valve. It also provides guidance on design and application of the main control valve used in large flow control with interferes.