• Title/Summary/Keyword: Hydraulic convergence

Search Result 138, Processing Time 0.025 seconds

T—S Fuzzy Model-based Sampled-data Observer Design for Detecting Internal Oil Leakage in Single-rod Hydraulic Cylinder: LMI Approach (편로드 유압실린더 내부 누유 검출을 위한 T—S 퍼지 모델 기반 샘플치 관측기 설계: LMI 접근법)

  • Jee, Sung Chul;Kim, Hyogon;Park, Jeongwoo;Lee, Mun-Jik;Kang, Hyungjoo;Li, Ji-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.405-414
    • /
    • 2016
  • This paper presents an internal oil leakage detection problem for a hydraulic single-rod cylinder. We derive the dynamics of the hydraulic cylinder as a state space model, and then design a T—S fuzzy model-based fault detection observer. We adopt an H observer design scheme so that the observer is robust against disturbance and relatively sensitive to the leakage fault. Sufficient design conditions are derived in the form of linear matrix inequalities. A numerical example is provided to verify the proposed techniques.

A Study on Optimal Pressure Control of Hydraulic Nozzle for Vaccum Foam System of Refrigerator in the 900L Class (900L 냉장고 진공발포시스템 유압노즐의 최적 압력제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Koo, Yeong-Mok;Yang, Jun-Suk;Shin, Haeng-Bong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.50-61
    • /
    • 2016
  • This study proposes a new approach to control the nozzle pressure of homogenizer in refrigerator foam system in the 900L class. Generally, dynamic characteristics of the hydraulic nozzle system is highly nonlinear due to uncertain parameters, and it is very difficult to control of hydraulic dynamics. Firstly, it has been performed to derive a real-time control algorithm based on the mathematical model of hydraulic cylinder, and to estimate the values of the unknown parameter in the hydraulic system. Secondly, the feedback controller was designed to implement the optimal pressure control of the hydraulic nozzle system. Finally the control performance was illustrated by simulation.

Effect of Hydraulic Pressure on Organic Fouling in Pressure Retarded Osmosis (PRO) Process (압력지연삼투 (PRO) 공정에서 유도용액에서의 압력이 유기물 파울링에 미치는 영향)

  • Suh, Dongwoo;Yoon, Hongsik;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.133-138
    • /
    • 2015
  • Pressure retarded osmosis (PRO) process is one of membrane processes for harvesting renewable energy by using salinity difference between feed and draw solutions. Power is generated by permeation flux multiplied by hydraulic pressure in draw side. Membrane fouling phenomena in PRO process is presumed to be less sever, but it is inevitable. Membrane fouling in PRO process decreases water permeation through membrane, resulting in significant power production decline. This study intended to investigate the effect of hydraulic pressure in PRO process on alginate induced organic fouling as high and low hydraulic pressures (6.5 bar and 12 bar) were applied for 24 h under the same initial water flux. In addition, organic fouling in draw side from the presence of foulant (sodium alginate) in draw solution was examined. As major results, hydraulic pressure was found to be not a significant factor affecting in PRO organic fouling as long as the same initial water flux is maintained, inidicating that operating PRO process with high hydraulic pressure for efficient energy harvesting will not cause severe organic fouling. In addition, flux decline was negligible from the presence of organic foulant in draw side.

Evaluation of Convection Schemes for Thermal Hydraulic Analysis in a Liquid Metal Reactor (액체금속로 내부 열유동해석을 위한 대류항처리법 평가)

  • Choi Seok-Ki;Kim Seong-O;Kim Eui-Kwang;Eoh Jae-Hyuk;Choi Hoon-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.64-69
    • /
    • 2002
  • A numerical study has been peformed for evaluation of convection schemes for thermal hydraulic analysis in a liquid metal reactor Four convection schemes, HYBRID, QUICK, SMART and HLPA included in the CFX-4 code are considered. The performances of convection schemes are evaluated by applying them to the five test problems. The accuracy, stability and convergence are tested. It is shown that the HYBRID scheme is too diffusive, and the QUICK scheme exhibits overshoots and undershoots, and the SMART scheme shows convergence oscillations, and the HLPA scheme preserves the boundedness without causing convergence oscillations. The accuracies of SMART, QUICK and HLPA schemes are comparable. Thus, the use of HLPA scheme is highly recommended for thermal hydraulic analysis in a liquid metal reactor.

  • PDF

Experimental Study on the Control Characteristics of the Transient Pulsation Pressure in the Hydraulic Brake System (유압 브레이크계통의 과도맥동압력 제어특성에 관한 실험적 연구)

  • Lee, Joo-Seong;Lee, Kye-Bock;Lee, Chung-Gu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • A method for the control of pulsating pressure transients in the hydraulic brake system has been presented and experimentally verified. This control is accomplished by installing flow restricting devices at appropriate locations in the brake oil pipe line. The experimental results presented are expected to provide a basis for transient control design of hydraulic brake systems.

  • PDF

Pipe Design for Hydraulic System in Construction Heavy Equipment by Numerical Analysis (수치해석을 통한 건설중장비 유압시스템용 파이프설계에 대한 연구)

  • Shin, Yoo In;Yi, Chung Seob;Han, Sung Gil;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.64-71
    • /
    • 2019
  • We herein propose a systematic design method of hydraulic pipes used in heavy construction equipment. We found that even though many design studies have been conducted regarding major hydraulic components such as pumps, cylinders, and control valves, studies regarding the optimal design of hydraulic pipes are scarce. In this study, the design of four types of pipes is considered: two high-pressure and two low-pressure pipes. First, fluid flow analysis was conducted based on oil flow and pressure for various radii of curvature. For a check-valve pipe, we considered the location of an inlet pipe. We could visualize fluid flow inside the pipe according to the flow velocity and pressure distribution. Based on fluid flow analysis, we conducted a structural analysis that revealed the stress distribution and concentration for each pipe design. We selected the best design parameters for each pipe design, fabricated the pipes, and subsequently tested them for validity.

Convergence analysis technology for ship loading arm (선박용 로딩암에 적용할 수 있는 융합해석기술에 관한 연구)

  • Lee, Dae-Hee;Noh, Dae-Kyung;Lee, Geun-Ho;Park, Sung-Su;Jang, Joo-Sup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.258-268
    • /
    • 2017
  • In this study, we aim to converge a technology for analyzing the hydraulic circuit of a loading arm with an- other one for analyzing multi-body dynamics by utilizing analysis software SimulationX. Further, this study intends to overcome the limitations of the existing technology for analyzing a hydraulic circuit with a variation at the rotation center of the moving mass and the difficulty of incorporating the behavior in a gravity field. First, the specifications of the hydraulic circuit components were reflected in an analysis model to secure reliability. Hydraulic circuit modeling was then performed using a single analysis model with a verified reliability. Subsequently, the multi-body system (MBS) model of the loading arm was formed. Finally, the analysis model of the hydraulic circuit and the MBS model were converged to check if the circuit analysis result was exactly reflected in the MBS model. The convergence analysis model has development cost-saving effect because it is capable of predicting the dynamic behavior of an object without the prototype.

A Study on The Design and Structural Strength of L-Type Davit with Electric Cylinder Type Actuator for Offshore Plant and Ship (해양플랜트·선박용 전기실린더형 액추에이터를 탑재한 L타입 데빗의 설계 및 구조강도에 관한 연구)

  • Young-Hun Kim;Da-Seoung Kwak;Ki-Hyun Park;Jae-Rin Shim;Yong-Won Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.175-181
    • /
    • 2023
  • In offshore plants, various equipments including cranes and davits are used for safety management. Hydraulic cylinder type actuators are mainly used for luffing operations such as cranes and davits. However, in the case of a cylinder using hydraulic pressure, a separate power pack is required to supply hydraulic pressure. When used for a long time, maintenance costs such as sticking of hydraulic valves, contamination of hydraulic oil and deterioration of hydraulic hoses occur. In addition, a lot of hydraulic oil is used in the handling of cranes and davits, which causes marine pollution due to management problems. As a result, as interest in marine pollution prevention has increased recently, interest in actuators that do not use hydraulic pressure is also increasing. Therefore, in this study, we intend to develop a davit with an electric cylinder type actuator that uses electricity rather than hydraulic pressure by the SOLAS regulation. In other words, the conceptual design of the davit driven through the linear motion of the ball screw using electricity is performed, and the structural safety of the drive is also reviewed so that it can be utilized in the industrial field.

A Experimental Study on the Response Time Characteristics of Actuator in the Hydraulic Control System (유압제어계통의 액추에이터 응답시간 특성변화에 관한 실험적 연구)

  • Lee, Joo-Seong;Lee, Kye-Bock
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • Response time of actuator in a hydraulic system may be important and necessary to avoid failures and to improve the efficiency of operation. Flow restricting devices can result in a decrease in the peak pressure, but may change the response time. The response time has an important effect on both operator and operator perceived smoothness. The response time should correspond to how fast a system responds to a given disturbance at the system boundary, Occasionally the appropriate response time is not easily determined. This study is on the characteristics of response time in the hydraulic system.

  • PDF

Development of Electronic Proportional Control Valve with LVDT for Spool Displacement Feedback and Its Performance Evaluation (스풀 변위 피드백을 위한 LVDT 적용 비례전자제어밸브의 개발 및 성능평가)

  • Shin, Haeng-Bong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.160-166
    • /
    • 2016
  • This study proposes the development and performance evaluation of electronic proportional control valve having an LVDT. The electronic proportional control valve is composed of hydraulic valve, proportional solenoid and controller. LVDT is to reduce the steady state error for the reference input of the controller by the feedback signal to detect the displacement of the spool. Designed LVDT is applied to the common proportional valve. In order to evaluate the performance of the developed valve, the hydraulic test equipment was developed and flow tests were carried out. From experimental results, it was proved that the hysteresis was less than 1% based on the maximum flow rate.