• Title/Summary/Keyword: Hydraulic conductivities

Search Result 104, Processing Time 0.034 seconds

A Study on the Effective Hydraulic Conductivity of an Anisotropic Porous Medium

  • Seong, Kwanjae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropy is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities.

Applicability of Relative Effective Porosity Model to Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun;Suleiman, A.A.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.341-345
    • /
    • 2004
  • An attempt has been made in this study to evaluate an applicability of Relative Effective Porosity Model (REPM) as a method for estimating saturated hydraulic conductivity (K$_{s}$) for homogeneous coarse, medium, and fine sands. The saturated hydraulic conductivities obtained from REPM are converted into average linear velocities using Darcy's Law and compared with the results from experimental tracer tests for homogeneous coarse, medium, and fine sand layer. Two types of tracer tests analyses, analytical solution using CXTFIT and moment methods, are performed to obtain reasonable linear velocity range for each layer. For the coarse and medium sands, the converted average linear velocity from REPM is in the velocity range obtained from tracer tests. However, small difference between the results from REPM and tracer tests is found for the fine sands. These results show that REPM gives reasonable estimates of saturated hydraulic conductivity.y.

  • PDF

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VIII) - The Hydraulic Architecture of Quercus mongolica (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VIII) - 신갈나무의 수분통도성(水分通導性) 구조(構造) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.120-129
    • /
    • 1996
  • This study was carried out to investigate the hydraulic architecture such as relative hydraulic conductivity, Leaf specific conductivity(LSC), Huber value, Specific conductivity of the stem, branch and Junctions of stem-to-branch in Quercus mongolica trees. The hydraulic architecture of various hydraulic conductivities of stem and branch was described. The results obtained were summarized as follows : 1. The range of relative hydraulic conductivity was $2.5526{\times}10^{-12}$ to $1.2260{\times}10^{-10}m^2$ in stems, $1.6279{\times}10^{-11}$ to $6.8378{\times}10^{-11}m^2$ in branches. The relative hydraulic conductivities increased with decreasing diameter of stem and branch. The relative hydraulic conductivity of one-year-old terminal shoots were two times greater than that of the lateral shoots. 2. LSC value was larger at the top than at the base in stem. LSC is much smaller in branches than in stem ; especially smallest at branching part. 3. Hydraulic conductivities of the branching part appeared the different values with the 4 type and 4 type. Relative hydraulic conductivity, LSC, Specific conductivity and mean vessel diameter in type branching part were larger in stem than in branch part, but not found in the branching part of Y type. 4. LSC and Specific conductivity of stem increased with decreasing diameter, but Huber value slowly increased with decreasing diameter ; especially highest at less than 1cm diameter. 5. LSC, Huber value, and mean diameter of vessels were larger at 1-year-old leader shoots than at lateral shoots. 6. The mean vessel diameter in various parts of a tree decreased with decreasing diameter of stem, but the number of vessels per unit area($mm^{-2}$) increased reversely. Mean vessel diameter in stem decreased sharply at earlywood and slowly at latewood with decreasing diameter of stem.

  • PDF

The Phenomenological Comparison between Results from Single-hole and Cross-hole Hydraulic Test (균열암반 매질 내 단공 및 공간 간섭 시험에 대한 현상적 비교)

  • Kim, Tae-Hee;Kim, Kue-Young;Oh, Jun-Ho;Hwang, Se-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.39-53
    • /
    • 2007
  • Generally, fractured medium can be described with some key parameters, such as hydraulic conductivities or random field of hydraulic conductivities (continuum model), spatial and statistical distribution of permeable fractures (discrete fracture network model). Investigating the practical applicability of the well-known conceptual models for the description of groundwater flow in fractured media, various types of hydraulic tests were applied to studies on the highly fractured media in Geumsan, Korea. Results from single-hole packer test show that the horizontal hydraulic conductivities in the permeable media are between $7.67{\times}10^{-10}{\sim}3.16{\times}10^{-6}$ m/sec, with $7.70{\times}10^{-7}$ m/sec arithmetic mean and $2.16{\times}10^{-7}$ m/sec geometric mean. Total number of test interval is 110 at 8 holes. The number of completely impermeable interval is 9, and the low permeable interval - below $1.0{\times}10^{-8}$ m/sec is 14. In other words, most of test intervals are permeable. The vertical distribution of hydraulic conductivities shows apparently the good correlation with the results of flowmeter test. But the results from the cross-hole test show some different features. The results from the cross-hole test are highly related to the connectivity and/or the binary properties of fractured media; permeable and impermeable. From the viewpoint of the connection, the application of the general stochastic approach with a single continuum model may not be appropriate even in the moderately or highly permeable fractured medium. Then, further studies on the investigation method and the analysis procedures should be required for the reasonable and practical design of the conceptual model, with which the binary properties, including permeable/impermeable features, can be described.

Swelling and Relative Hydraulic Conductivities of transformed Ca-bentonite with various Na-cemicals

  • Chung Doug-Young;Lee Kyo-S.;Lee Dong-S.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.220-223
    • /
    • 2006
  • To investigate the effect of solution pH and particle size of Na-bentonite on swelling characteristics and relative hydraulic conductivity, four kinds of acids and two alkali were selected. The results showed that the swelling was decreased to half of the original Na-bentonite's swelling index. Also the decrease in SI was most distinctive in pH 3.5 of HCl. But changes of swelling index between initial and stabilized were minimal in alkali treatment, compared to the change by acid treatment. No flux was detected under atmospheric pressure although there was drastic decrease in swelling. However, leaching started after application of 1.5 bars of air-pressure equivalent to 15 m of water head.

  • PDF

Analysis of Changes of Seepage Line on Straight and Curved Levee (하천제방 직선부 및 만곡부의 침윤선 변화 분석)

  • Lee, Seung-Ho;Kang, Hyoo-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.101-106
    • /
    • 2009
  • In this study we analyzed the seepage characteristics of meandering section of rivers commonly seen in domestic terrain. The seepage analysis is designed to be more realistic by considering a tangent and meandering section of levee. The levee was idealized to reflect the relevant characteristics by considering the curved angle of 90 degrees and 130 degrees in the spatial frequencies, water elevation conditions, and hydraulic conductivities. Seepage analysis becomes more detailed and precise with the seepage curve shape which is interpreted to indicate the flow of three-dimensional numerical analysis program using VisualFEA. As a result of the analysis, it is shown that the water level in the straight levee was constant, regardless of hydraulic conductivities, and the total head in the meandering section was increased by the overlapping of seepage. Consequently, it is found that the total head was increased more significantly in the case of 90 degrees curved levees than 130 degrees, and the total head showed similar characteristics In the straight levee.

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.498-507
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1502-1511
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Numerical Analysis of the Change in Groundwater System with Tunnel Excavation in Discontinuous Rock Mass (불연속 암반에서의 터널굴착에 따른 지하수체계 변화에 대한 수치해석적 연구)

  • Park, Jung-Wook;Son, Bong-Ki;Lee, Chung-In;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.44-57
    • /
    • 2008
  • In this study, a 2D finite-element analysis, using the SEEP/W program, was carried out to estimate the amount of groundwater flawing into a tunnel, as well as the groundwater tables around wetland areas during and after a tunnel excavation through rock mass. Four sites along the Wonhyo-tunnel in Cheonseong Mountain (Gyeongnam, Korea) were analysed, where the model damain of the tunnel included both wetland and fault zone. The anisotropy of the hydraulic conductivities of the rock mass was calculated using the DFN model, and then used as an input parameter for the cantinuum model. Parametric study on the influencing factors was perofrmed to minimize uncertainties in the hydraulic properties. Moreover, the volumetric water content and hydraulic conductivity functions were applied ta the model to reflect the ability of a medium ta store and transport water under both saturated and unsaturated conditions. The conductivity of fault zone was assumed ta be $10^{-5}m/sec\;or\;10^{-6}m/sec$ and the conductivity of grouting zone was assumed as 1/10, 1/50 or 1/100 of the conductivity of rock mass. Totally $6{\sim}8$ cases of transient flow simulation were peformed at each site. The hydraulic conductivities of fault zone showed a significant influence on groundwater inflow when the fault zone crossed the tunnel. Also, groundwater table around wetland maintained in case that the hydraulic conductivity of grouting zone was reduced ta be less than 1/50 of the hydraulic conductivity of rock mass.