• 제목/요약/키워드: Hydraulic analysis model

검색결과 1,130건 처리시간 0.025초

Antilock Brake System 유압 조절기의 슬립율 제어 특성에 관한 연구

  • 김진한;김수태;심재진;최성대
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.177-181
    • /
    • 1992
  • For this study, a new hydraulic control unit which designed in compact compared to the currently manufactured hydraulic control unit for ABS has been introduced and its experimental model has been made. Based on the basic principle as ABS using braking force characteristics against slip ratio of tire, half car model bench tester were designed and made to make an analysis of braking effect of the new hydraulic control unit. Experiment for slip ratio characteristics of tire has been carried out using half car model bench tester and with the results of this experiment and control experiment of the new hyraulic control unit, the experiment result of the characteristics of tire and control experiment were compared to find out their correspondence. And furthermore, slip ratio characteristics of the new hydraulic control unit has been studied based on the experiment result of slip ratio characteristics of tire through simulation and compared with experiment result.

파워시프트 변속기 유압클러치시스템의 해석적 연구 (An Analytical Investigation of a Hydraulic Clutch System of Powershift Transmission)

  • 이재천
    • 유공압시스템학회논문집
    • /
    • 제6권1호
    • /
    • pp.25-31
    • /
    • 2009
  • This study presents an analytical model of hydraulic clutch system of a power shift transmission to analyze pressure modulation characteristics. A typical hydraulic clutch system was modeled by using AMESim in which the parameters of major components were measured for simulation. Test apparatus was established using the components of power shift and power shuttle clutches with instrumental equipment. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the cylinder model analogized clutch dynamics need to be improved in future study. The effects of parameters of orifice diameter, accumulator stroke and oil temperature on pressure modulation were analyzed respectively. The results of parameter sensitivity analysis show that modulation time and set pressure can be easily adjusted by changing parameter values. It is also found that the hydraulic clutch system used in this study is so susceptible to oil temperature that cooling equipment is necessary.

  • PDF

Flow Factor Prediction of Centrifugal Hydraulic Turbine for Sea Water Reverse Osmosis (SWRO)

  • Ma, Ying;Kadaj, Eric;Terrasi, Kevin
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.369-378
    • /
    • 2010
  • The creation of the hydraulic turbine flow factor map will undoubtedly benefit its design by decreasing both the design cycle time and product cost. In this paper, the geometry and flow variables, which effectively affect the flow factor, are proposed, analyzed and determined. These flow variables are further used to create the operating condition maps by using different model approaches categorized into Response Surface Method (RSM) and Artificial Neural Network (ANN). The accuracies of models created by different approaches are compared and the performances of model approaches are analyzed. The influences of chosen variables and the combination of Principle Component Analysis (PCA) and model approaches are also studied. The comparison results between predicted and actual flow factors suggest that two-hidden-layer Feed-forward Neural Network (FFNN), and one.hidden-layer FFNN with PCA has the best performance on forming this mapping, and are accurate sufficiently for hydraulic turbine design.

Analytical study of the failure mode and pullout capacity of suction anchors in sand

  • Liu, Haixiao;Peng, Jinsong;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • 제5권4호
    • /
    • pp.279-299
    • /
    • 2015
  • Suction anchors are widely adopted and play an important role in mooring systems. However, how to reliably predict the failure mode and ultimate pullout capacity of the anchor in sand, especially by an easy-to-use theoretical method, is still a great challenge. Existing methods for predicting the inclined pullout capacity of suction anchors in sand are mainly based on experiments or finite element analysis. In the present work, based on a rational mechanical model for suction anchors and the failure mechanism of the anchor in the seabed, an analytical model is developed which can predict the failure mode and ultimate pullout capacity of suction anchors in sand under inclined loading. Detailed parametric analysis is performed to explore the effects of different parameters on the failure mode and ultimate pullout capacity of the anchor. To examine the present model, the results from experiments and finite element analysis are employed to compare with the theoretical predictions, and a general agreement is obtained. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work demonstrates that the failure mode and pullout capacity of suction anchors in sand can be easily and reasonably predicted by the theoretical model, which might be a useful supplement to the experimental and numerical methods in analyzing the behavior of suction anchors.

HEC-RAS를 이용한 남한강 수계의 수리모델링에 관한 연구 (Study of Hydraulic Modeling in South Han River by HEC-RAS)

  • 장인수;박기범
    • 한국산업융합학회 논문집
    • /
    • 제8권4호
    • /
    • pp.213-220
    • /
    • 2005
  • The Youngwal 1, Youngwal 2 and Youngchun gaging stations are observed flood flow and low flow during Mar. 2004~Oct. 2004. They are observed water stages and flow velocities for flood and low flow. The observed data are used to derived rating curve and equations. The HEC-RAS model is applied for hydraulic modeling in gauging stations. The model is designed to perform one-dimensional hydraulic calculations for an river improvement plan in a full network of natural and constructed channels, and is comprised of a graphical user interface(GUI), separate hydraulic analysis components, data storage and management capabilities, graphics and reporting facilities.

  • PDF

특정 사축식 피스톤 유압서보모터의 개발 및 성능분석 (A Developmental Study of Bent Axis Piston Type Hydraulic Servo Motor for Military Applications)

  • 이대옥;김학성;안태영;김고도;김기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.279-287
    • /
    • 1994
  • This paper is prepared as a developmental study of tited axis pistion type hydraulic motor for military applications. The high power precision hydraulic motor requires more advanced techniques to design, analyze, manufacture, test and evaluate. We are trying to build a HW/SW technology base about hydraulic motor by accomplishing this study completsly. We manufactured four perproduction model and performed the test and evaluation with the developmental specifications and test equipments. These results will be used in performance analysis and estimation, and the advanced model development for the military and commercial hydraulic motors.

  • PDF

수공구조물 여유고 산정을 위한 파랑모형의 적용성 검토 (Review on Application of Wave Model for Calculation of Freeboard in Hydraulic Structure)

  • 김경호;이호진
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.25-30
    • /
    • 2007
  • Most of dams and reservoirs were made from natural materials, such as soil, sand and gravel. This type of hydraulic structure has the danger of collapse by overflow during a flood. Freeboard is the vertical distance between the crest of the dam and the full supply level in the reservoir. It must be sufficient to prevent overtopping from over flow. Thus, freeboard determination involves engineering judgment, statistical analysis, and consideration of the damage that would result from the overtopping of a hydraulic structure. This study attempts to calculate the wave height in dam, which is needed for the determination of the freeboard of the dam. Chung-ju dam is selected as the study area. Using the empirical formulas, the wave heights in dam were calculated, and the results were compared with those by the SWAN model, which is a typical wave model. The difference between the calculated results from the empirical formulas and those by the SWAN model is considerably large. This is because empirical equations consider only fetch or fetch and wind velocity, while the SWAN model considers depth and topography data as well.

항공기용 유압 시스템 신뢰도 및 정비도 분석 프로세스 고찰 (A Study on the Reliability and Maintainability Analysis Process for Aircraft Hydraulic System)

  • 한창환;김근배
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.105-112
    • /
    • 2016
  • An aircraft must be designed to minimize system failure rate for obtaining the aircraft safety, because the aircraft system failure causes a fatal accident. The safety of the aircraft system can be predicted by analyzing availability, reliability, and maintainability of the system. In this study, the reliability and the maintainability of the hydraulic system are analysed except the availability, and therefore the reliability and the maintainability analysis process and the results are presented for a helicopter hydraulic system. For prediction of the system reliability, the failure rate model presented in MIL-HDBK-217F is used, and MTBF is calculated by using the Part Stress Analysis Prediction and quality/temperature/environmental factors described in NPRD-95 and MIL-HDBK-338B. The maintainability is predicted by FMECA(Failure Mode, Effect & Criticality Analysis) based on MIL-STD-1629A.

Comparative analysis of turbulence models in hydraulic jumps

  • Lobosco, Raquel J.;da Fonseca, David O.;Jannuzzia, Graziella M.F.;Costa, Necesio G.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.339-350
    • /
    • 2019
  • A numerical simulation of the incompressible multiphase hydraulic jump flow was performed to compare the interface prediction through the use of the three RANS turbulence models: $k-{\varepsilon}$, $RNGk-{\varepsilon}$ and SST $k-{\omega}$. A three dimensional no submerged hydraulic jump and a two dimensional submerged hydraulic jump were modeled. Both the geometry and the mesh were created using the open source Gmsh code. The project's geometry consists of a rectangular channel with length and height differences between the two dimensional and three dimensional simulations. Uniform hexahedral cells were used for the mesh. Three refining meshes were constructed to allow to verify simulation convergence. The Volume of Fluid (abbr. VOF) method was used for treatment of the air-water surface. The turbulence models were evaluated in three distinct set up configurations to provide a greater accuracy in the flow representation. In the two-dimensional analysis of a submerged hydraulic jump simulation, the turbulence model RNG RNG $k-{\varepsilon}$ provided a better interface adjust with the experimental results than the model $k-{\varepsilon}$ and SST $k-{\omega}$. In the three-dimensional simulation of a no-submerged hydraulic jump the k-# showed better results than the SST $k-{\omega}$ and RNG $k-{\varepsilon}$ capturing the height and length of the ledge with a better fit with the experimental results.

유압유 점도가 액추에이터 성능에 미치는 영향 (Effects of Viscosity of Hydraulic Oil on the Performance of Actuator)

  • 김진형;한수민;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.