• Title/Summary/Keyword: Hydraulic System Component

Search Result 137, Processing Time 0.023 seconds

DEVELOPMENT OF HARDWARE-IN-THE-LOOP SIMULATION SYSTEM AS A TESTBENCH FOR ESP UNIT

  • Lee, S.J.;Park, K.;Hwang, T.H.;Hwang, J.H.;Jung, Y.C.;Kim, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.203-209
    • /
    • 2007
  • As the vehicle electronic control technology quickly grows and becomes more sophisticated, a more efficient means than the traditional in-vehicle driving test is required for the design, testing, and tuning of electronic control units (ECU). For this purpose, the hardware-in-the-loop simulation (HILS) scheme is very promising, since significant portions of actual driving test procedures can be replaced by HIL simulation. The HILS incorporates hardware components in the numerical simulation environment, and this yields results with better credibility than pure numerical simulations can offer. In this study, a HILS system has been developed for ESP (Electronic Stability Program) ECUs. The system consists of the hardware component, which that includes the hydraulic brake mechanism and an ESP ECU, the software component, which virtually implements vehicle dynamics with visualization, and the interface component, which links these two parts together. The validity of HIL simulation is largely contingent upon the accuracy of the vehicle model. To account for this, the HILS system in this research used the commercial software CarSim to generate a detailed full vehicle model, and its parameters were set by using design data, SPMD (Suspension Parameter Measurement Device) data, and data from actual vehicle tests. Using the developed HILS system, performance of a commercial ESP ECU was evaluated for a virtual vehicle under various driving conditions. This HILS system, with its reliability, will be used in various applications that include durability testing, benchmarking and comparison of commercial ECUs, and detection of fault and malfunction of ESP ECUs.

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

Study on The Development of Basic Simulation Network for Operational Transient Analysis of The CANDU Power Plant

  • Park, Jong-Woon;Lim, Jae-cheon;Suh, Jae-seung;Chung, Ji-bum;Kim, Sung-Bae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.423-428
    • /
    • 1995
  • Simulation models have been developed to predict the overall behavior of the CANDU plant systems during normal operational transients. For real time simulation purpose, simplified thermal hydraulic models are applied with appropriate system control logics, which include primary heat transport system solver with its component models and secondary side system models. The secondary side models are mainly used to provide boundary conditions for primary system calculation and to accomodate plant power control logics. Also, for the effective use of simulation package, hardware oriented basic simulation network has been established with appropriate graphic display system. Through validation with typical plant power maneuvering cases using proven plant performance analysis computer code, the present simulation package shows reasonable capability in the prediction of the dynamic behavior of plant variables during operational transients of CANDU plant, which means that this simulation tool can be utilized as a basic framework for full scope simulation network through further improvements.

  • PDF

Reliability Analysis to Contaminant Migration in Saturated Sandy Soils : System Reliability Approach (포화(飽和)된 사질토(砂質土)내로의 오염물(汚染物) 이동에 대한 시스템 신뢰성(信賴性) 모델의 응용(應用))

  • Jang, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.229-237
    • /
    • 1992
  • Series system reliability analysis of non-reactive contaminant transport is performed in a two dimensional horizontal domain with two different limit state functions: (1) concentration threshold and (2) exposure time threshold. The transient source transport model is combined with the system reliability model to evaluate the probability that a specified maximum concentration at a node of interest would be exceeded or that a moderate concentration would exceed some exposure limit over a given period of time. The results give probabilities of exceedence greater than probability of each component and they tend to be dominanted by the component with larger probability. Transverse dispersivity turns out to be an important parameter in addition to hydraulic conductivity in a two-dimensional contaminant transport model with transient source. System sensitivity is found to reflect the corresponding sensitivity of both components, with the component with larger probability having a greater influence.

  • PDF

Development of a Power Plant Simulation Tool with GUI based on General Purpose Design Software

  • Kim Dong Wook;Youn Cheong;Cho Byung-Hak;Son Gihun
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.493-501
    • /
    • 2005
  • A power plant simulation tool ('PowerSim') has been developed with 10 years experience from the development of a plant simulator for efficient modeling of a power plant. PowerSim is the first developed tool in Korea for plant simulation with various plant component models, instructor station function and the Graphic Model Builder (GMB). PowerSim is composed of a graphic editor using general purpose design software, a netlist converter, component models, the scheduler, Instructor Station and an executive. The graphic editor generates a netlist that shows the connection status of the various plant components from the Simdiagram, which is drawn by Icon Drag method supported by GUI environment of the PowerSim. Netlist Converter normalizes the connection status of the components. Scheduler makes scheduling for the execution of the device models according to the netlist. Therefore, the user makes Simdiagram based on the plant Pipe and Instrument Drawing (P&ID) and inputs the plant data for automatic simulating execution. This paper introduces Graphic Model Builder (GMB), instructor station, executive and the detailed introduction of thermal-hydraulic modeling. This paper will also introduce basic ideas on how the simulation Diagram, based on netlist generated from general purpose design software, is made and how the system is organized. The developed tool has been verified through the simulation of a real power plant.

Auto-dump Design of Postharvest Bulk Handling Machinery System for Onions

  • Park, Jongmin;Choi, Wonsik;Kim, Ghiseok;Kim, Jongsoon
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.379-385
    • /
    • 2018
  • Purpose: Postharvest handling of onions (harvesting, cleaning, grading, cooling, storing, and transport) should be performed continually to reduce costs and improve quality. The purpose of this study is to a) determine the design parameters and operating conditions of anion auto-dumping that constitutes a key component of the postharvest bulk handling machinery system, and b) to perform a performance test with the auto-dump prototype system. Methods: Kinematic analyses and computer simulations of the auto-dump mechanism were applied to analyze the operating conditions and design parameters. Results: The optimum working condition for the auto-dump was determined from kinetic analyses. In addition, the interaction between the velocity of the hydraulic cylinder and the angular velocity of the auto-dump were analyzed in order to control the bulk handling machinery system. The acting forces and optimum operating conditions of the hydraulic cylinder were determined by analyzing the forces related to the mass of inertia of the auto-dump assembly during rotation. The method of controlling the feeding rate of onions in terms of the uniformity of the stacking pattern and the control of the entire system was better than the two-stage method of controlling the rotational speed of the auto-dump. Based on the performance test with the prototype for the auto-dump, the stacking pattern and rigidity of the system were analyzed. Conclusions: These results would be of great importance in the postharvest bulk handling machinery system for onions.

Development of a Dedicated Model for a Real-Time Simulation of the Pressurizer Relief Tank of the Westinghouse Type Nuclear Power Plant (웨스팅하우스형 원자력발전소 가압기 방출 탱크의 실시간 시뮬레이션을 위한 전문모델 개발)

  • 서재승;전규동
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • The thermal-hydraulic model ARTS which was based on the RETRAN-3D code adopted in the domestic full-scope power plant simulator which was provided in 1998 by KEPRI. Since ARTS is a generalized code to model the components with control volumes, the smaller time-step size should be used even if converged solution could not get in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. In the case of PRT(Pressurizer Relief Tank) model, it is consist of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume can limit the time-step size if we model it with a general control volume. To prevent the time-step size reduction due to convergence failure for simulating this component, we developed a dedicated model for PRT. The dedicated model was expected to provide substantially more accurate predictions in the analysis of the system transients. The results were resonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with the ANSI/ANS-3.5-1998 simulator software performance criteria and RETRAN-3D results.

  • PDF

Review on the induced seismic event for artificial reservoir (인공저류층 생성을 위한 유도진동에 관한 사전연구)

  • Jeon, Jong-Ug;Myoung, Woo-Ho;Kim, Young-Deug
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.55-60
    • /
    • 2012
  • In many cases, geothemal wells will not be opened up a geothermal reservoir under such conditions that an extraction of geothermal energy is economically viable without any further measures. Geothermal wells often have to be stimulated, in order to increase productivity. For the non-volcanic area, such as Korea, the hydraulic stimulation is necessary to complete geothermal power plant. The analysis of induced seismic event showed that the thermal resource might have a much wider extent and a much higher generation potential than previously assumed. In order to record compressional and shear waves emitted during fracture stimulation, three-component geophones are placed in a seismometer. The recorded data from one seismometer is the convolution of the source magnitude, the transmission media, and the sensitivity of the instrument.

Structural time-varying damage detection using synchrosqueezing wavelet transform

  • Liu, Jing-Liang;Wang, Zuo-Cai;Ren, Wei-Xin;Li, Xing-Xin
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.119-133
    • /
    • 2015
  • This paper proposed a structural time-varying damage detection method by using synchrosqueezing wavelet transform. The instantaneous frequencies of a structure with time-varying damage are first extracted using the synchrosqueezing wavelet transform. Since the proposed synchrosqueezing wavelet transform is invertible, thus each individual component can be reconstructed and the modal participation factor ratio can be extracted based on the amplitude of the analytical signals of the reconstructed individual components. Then, the new time-varying damage index is defined based on the extracted instantaneous frequencies and modal participation factor ratio. Both free and forced vibrations of a classical Duffing nonlinear system and a simply supported beam structure with abrupt and linear time-varying damage are simulated. The proposed synchrosqueezing wavelet transform method can successfully extract the instantaneous frequencies of the damaged structures under free vibration or vibration due to earthquake excitation. The results also show that the defined time-varying damage index can effectively track structural time-varying damage.

Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor (수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산)

  • Song, Kee-nam;Kim, Y-W
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF