• Title/Summary/Keyword: Hydraulic Servo System

Search Result 250, Processing Time 0.03 seconds

A Study on Desired Trajectory Tracking Control by Hydraulic Shovel Arms (소형 유압 쇼벨암을 이용한 목표궤도추종제어에 관한 연구)

  • KANG, Soondong;HUH, Manjo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.78-89
    • /
    • 1996
  • This paper discusses automation of a small-scale hydraulic shovel and its trajectory control. To move an end-effect (grinder) along a desired trajectory, the controller uses PID(proportional-integral- defferential) control and internal pressure of hydraulic cylinder. To apply PID control in the present hydraulic system, the system model is derived physically and its system parameters are obtained by actual measurement. To show the effectiveness of the PID controller and propriety of system model, the computer simulations and experiments are performed. These results of the simulations and experiments indicate that the PID trajectory control of robotic deburring by hydraulic shovel is very effective.

  • PDF

Microcomputer Control of Electronic-Hydraulic Three-Point Hitch for Agricultural Tractors ( I ) -Computer Simulation- (농용(農用) 트랙터 3점(點)히치시스템의 마이크로컴퓨터 제어(制御)( I ) -컴퓨터 시뮬레이션-)

  • Ryu, K.H.;Yoo, S.N.;Kim, Y.S.;Kim, G.Y.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.18-26
    • /
    • 1992
  • A mechanical-hydraulic hitch control system has been adapted to most agricultural tractors. But it has various defects due to friction, inertia and hysteresis. Recently a number of electronic-hydraulic hitch control systems have been developed in several countries to improve control performance of the agricultural tractors equipped with a mechanical-hydraulic hitch control system. This study was conducted to develop a new electronic-hydraulic hitch control system using an electro-hydraulic servo valve instead of an on-off valve and to carry out computer simulation of the system. According to the result of computer simulation, the control system showed the best performance when the proportional constants were 9 and 4 for position and draft control respectively. The step and frequency responses were improved as flow rate increased.

  • PDF

Microcomputer-Based Constant Frequency Control of Generating System Driven by Hydraulic Power -Pump Displacement Control Type - (마이크로컴퓨터에 의한 유압구동식 발전장치의 정주파수 제어)

  • 정용길;이일영;김상봉;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1991
  • This study suggests a new type shaft generator driven by hydraulic power suitable for small size vessels. Since the shaft generator system is very easy to be affected by disturbances such as speed variation of main engine and load variation of the generator, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study two types of controller design method-the reference following optimal control method and robust servo control method-are adopted to the controller design. In the experiment, static and dynamic characteristics of the shaft generator system according to the variation of input frequency setting, the speed variation of the pump and the load variation of the generator are investigated. From the considerations on the computer simulation results and experimental results, it is ascertained that the shaft generator system proposed in this study has good control performances.

  • PDF

The Design of a Real-Time Simulator on the Hydraulic Servo System

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • In this study we suggest real-time simulator that could describe rent system without ordinary DSP card. This simulator is composed of 80196kc-16bit ordinary microprocessor, which is widely used up to now and personal computer. DSP card that has calculated complex numerical equation is replaced by personal computer and 80196kc generates control signals independently out of the personal computer. In all process personal computer is synchronized with one-board microprocessor (80196kc) within sampling time in the closed loop system. This makes it possible to be described in hydraulic servo system in real time.

A Study on the Oil Inertia Effect and Frequency Response Characteristics of a Servo Valve-Metering Cylinder System (서보밸브-미터링 실린더 시스템의 오일 관성효과와 주파수 응답 특성에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.9-19
    • /
    • 2021
  • The spool displacement signal of a directional control valve, including the servo valve, can be considered as the standard signal to measure dynamic characteristics. When the spool displacement signal is not available, the velocity signal of a metering cylinder piston can be used. In this study, the frequency response characteristics of the metering cylinder are investigated for the spool displacement input. The transfer functions of the servo valve-metering system are derived taking into consideration the oil inertia effect in the transmission lines. The theoretical results of the transfer functions are verified through computer simulations and experiments. The oil inertia effect in the transmission lines was found to have a very significant effect on the bandwidth frequency of the servo valve-metering cylinder system. In order to more precisely measure the dynamic characteristics of a servo valve, the metering cylinder should be set up to minimize the oil inertia effect by increasing the inner diameters of the transmission lines or shortening their lengths.

A Study on Design and Control of Electro-Hydraulic Pump System (전기.유압펌프 시스템의 설계 및 제어에 관한 연구)

  • 박성환;하석홍;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1062-1070
    • /
    • 1995
  • The study deals with controlling the velocity of hydraulic motor with PI controller through the control of displacement pump which has higher efficiency than valve-controlled system. This was done as follows. First, we modified original displacement pump and designed this electrohydraulic puma system. Second, after experimenting static and dynamic characteristics, we identified system parameter of approximated model. Lastly, to control the velocity of hydraulic motor we controlled the angle of the swash plate of displacement pump. Test carried out in the laboratory shows that transient and steady state response could be improved by PI controller reducing power loss.

A study on the development of Electro-hydraulic servo Excavator(1) -Simulation of the trajectory tracking control using VSS- (전기-유압서보에 의한 자동유압굴삭기의 개발에 관한 연구(1) -가변구조에 의한 궤도추종제어 시뮬레이션-)

  • Heo, Jun-Yeong;Ha, Seok-Hong;Lee, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.65-76
    • /
    • 1989
  • The objective of this paper is to design the variable structure system(VSS) controller for the tracking control of excavator which is driven by electro-hydraulic servomechansim. It is generally agreed that the dynamic characteristics of the robot arm such as excavator are coupled, time varying, and highly nonlinear, and also hydraulic system contains nonlinear characteristics in itself, so performing exact position control and trajectory tracking control need remarkable consideration. To solve this porblem, this system was designed as a variable structure system. The salient feature of VSS is that the sliding mode occur on a switching surface. While in sliding mode, the system remains insensitive to parameter variations and disturbances. This control algorithm was applied to a hydraulic excavator by simulaltion and to a simulator by experiment. And its effectiveness was verified. And the results of VSS for the electro-hydraulic excavator was compared with that of the PID when load disturbances and system parameter variations exist.

  • PDF

Adaptive Learning Control of Electro-Hydraulic Servo System Using Real-Time Evolving Neural Network Algorithm (실시간 진화 신경망 알고리즘을 이용한 전기.유압 서보 시스템의 적응 학습제어)

  • Jang, Seong-Uk;Lee, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.584-588
    • /
    • 2002
  • The real-time characteristic of the adaptive leaning control algorithms is validated based on the applied results of the hydraulic servo system that has very strong a non-linearity. The evolutionary strategy automatically adjusts the search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accordance with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time. The feasibility of the newly proposed algorithm was demonstrated through the real-time test.

Design of An Adaptive Force Control System for the Strip Caster (박판주조의 적응제어 시스템 설계)

  • 윤두형;허건수;변철울
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.766-771
    • /
    • 1997
  • In this strip casting,size of the roll separating force is a index representing the solidifying status of the melt. Rolling forces at the start of the casting process can change abruptly due to the overcooling of the leader strip. This inconsistensy leads to machine damage or deficient solidification which results in the failure of the casting. In this study, a mathematical model is derived for the hydraulic servo pressure control system for the twin roll strip caster and its parameters are estimated by the RLS algorithm. Based on the identified model, an one-step ahead predictive control method is applied in order to minimize the transient fluctuation of the rolling force. Its simulation results are compared with those of the conventional PI controllers.

  • PDF