• 제목/요약/키워드: Hydraulic Pressure Test

검색결과 483건 처리시간 0.027초

부유구조체 하면에 작용하는 파압에 대한 실험적 연구 (Experimental Study on Wave-Induced Hydraulic Pressure subjected to Bottom of Floating Structures)

  • 정연주;유영준;이두호
    • 대한토목학회논문집
    • /
    • 제31권6A호
    • /
    • pp.425-433
    • /
    • 2011
  • 본 연구에서는 파랑하중에 의해 부유구조체 하면에서 발생하는 파압 현상을 규명하기 위한 실험적 연구를 수행하였다. 서로 다른 측면 형상과 하면 형상을 갖는 4개의 폰툰형 시험체를 제작하여 5 종류 파랑하중에 대한 수리모형실험을 실시하였다. 시험체의 하면에는 6개의 파압센서를 설치하였으며, 수리모형실험 동안 시험체 하면에 작용하는 파압을 측정하였다. 측정된 파압을 분석한 결과, 와플형의 하면 형상은 부유구조체 하면에 작용하는 파압에 거의 영향을 미치지 않으며, 하이브리드형의 측면 형상은 파압에 상당한 영향을 미치는 것으로 나타났다. 이것은 하이브리드형의 측면에 형성된 에어갭(Airgap)이 부유구조체에 작용하는 파랑의 충격 에너지를 일부 흡수하여 파압을 저감시키는데 기여하는 것으로 판단된다. 기존의 상자형 폰툰과 비교하였을 때 하이브리드형의 파압은 선수부에서 약 83%, 중간부에서 약 74% 및 선미부에서 약 53% 수준인 것으로 나타났다.

유도슬롯과 주입공 배열을 이용한 수압암반절개 현장 실험 (Field Tests of Hydraulic Rock Splitting Technique Using Arrays of Injection Holes with Guide Slots)

  • 박종오;우익
    • 지질공학
    • /
    • 제29권4호
    • /
    • pp.405-415
    • /
    • 2019
  • 수압암반절개에서 유도된 균열은 자유면에서 지반의 최소주응력에 수직인 방향인 자유면과 평행한 방향으로 형성되거나, 기존에 발달한 미세균열의 영향을 많이 받는다. 본 연구에서는 흑운모화강암 사면에서 시추공 축과 평행한 방향으로 유도슬롯을 생성하여 이중패커의 압력 및 인터벌 구간에 수압을 주입하는 수압암반절개 실험을 수행하고 그 결과를 분석하였다. 실험 결과, 이중패커 압력 및 인터벌 구간 내의 주입으로 형성된 균열은 유도슬롯 방향을 따라 미세하게 나타났으며, 일부 균열은 시추공을 가로질러 연장되었다. 따라서 수압암반절개는 절개할 방향으로 유도슬롯을 생성하여 보다 많은 유량을 주입하면 효율적인 유도균열 조절이 가능할 것으로 판단된다.

Flow Distribution and Pressure Loss in Subchannels of a Wire-Wrapped 37-pin Rod Bundle for a Sodium-Cooled Fast Reactor

  • Chang, Seok-Kyu;Euh, Dong-Jin;Choi, Hae Seob;Kim, Hyungmo;Choi, Sun Rock;Lee, Hyeong-Yeon
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.376-385
    • /
    • 2016
  • A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and $60^{\circ}C$ (equivalent to Re ~ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.

전자유압식 분사계를 갖는 D.I. 디젤기관의 분사 및 연소에 관한 연구 (A Study on Injection and Combustion of D.I. Diesel Engine with Electronic-hydraulic Fuel Injection System)

  • 김현구;라진홍;안수길
    • 수산해양교육연구
    • /
    • 제9권1호
    • /
    • pp.83-97
    • /
    • 1997
  • Diesel engine is widely used for ship and industry source of power because of its high thermal efficiency and reliability and durability. However it lead to air pollution due to exhaust gas, and it is important to develop diesel engine of lower air-pollution to decrease the hazardous exhaust gas emissions. As one of the ways, the study for practically using the high pressure of fuel injection and variable injection timing system is being processing. The high pressure injection, which is said to be an effective means for reducing both NOx and particulate emissions, and great improvements in combustion characteristics have been reported by many researchers. In this study, electronic-hydraulic fuel injection system and hydraulic fuel injector system have been applied to the D.I. test engine for high pressure injection and variable injection timing. The injection pressure and injection rate depending upon accumulator pressure were measured with strain gage and Bosch injection rate measuring system before fitting the system into test engine, and analyzed the characteristics of the injection system. The combustion characteristics with this injection system has been analyzed with data concerning heat release rate, pressure rising rate, ignition point, ignition delay and maximum pressure value.

  • PDF

Performance of SR Drive for Hydraulic Pump

  • Lee, Sang-Hun;Lee, Dong-Hee;An, Young-Joo;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.55-60
    • /
    • 2007
  • This paper proposes a hydraulic pump system that uses a variable speed SR drive and constant capacity pump. For the design of the SRM (Switched Reluctance Motor) and digital controller, base speed and rating torque are determined from the mechanical specifications of the hydraulic pump. In order to minimize the power consumption during the maintaining of preset oil-pressure, the pressure control system changes the maximum oil-pressure band and flow rate according to the motor speed. The DSP control system adjusts the oil-pressure and the speed of the SRM from the pressure sensor signal, due to conservation of power consumption by the hydraulic pump. A 2.2Kw, 12/8 pole SR motor and DSP based digital controller are designed and tested with experimental set-up. The test results indicate that the system has some good features such as high efficiency and rapid response characteristics.

자동차용 양토출 단흡입 워터펌프의 성능 예측에 관한 연구 (A Study on the Performance Prediction of Automotive Water Pump with Double Discharge Single Suction)

  • 허형석;박경석;이기수;원종필
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.27-36
    • /
    • 2004
  • A Numerical analysis has been used to predict the performance in the automotive water pump with double discharge single suction. The influence of parameters such as coolant flow rate, rotational speed, ratio of blade height and clearance has been investigated. Also, the prediction of hydraulic performances such as static pressure rise, shaft power, hydraulic power and pump efficiency is carried out on the water pump including an impeller and a volute casing. A full size water pump test bench has been developed to validate the CFD flow model. Discharge flow rate, suction pressure, discharge pressure, rotational speed and torque measurements are provided. Coolant temperature is 8$0^{\circ}C$, water tank pressure is 1 kgf/$\textrm{cm}^2$ and flow rates vary.

유압펌프용 SRM 구동 시스템의 특성해석 (Characteristics Analysis of SRM Drive System for Hydraulic Pump)

  • 이주현;김봉철;김태형;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.83-86
    • /
    • 2005
  • This paper proposed a hydraulic pump system which uses a variable SR drive and constant capacity pump. The base and maximum speed, torque are determined from displacement capacity of the pump and maximum pressure. The drive system is set to have a minimum power consumption having hydraulic preset pressure, which is operated within a maximum capacity and maximum preset pressure. This is achieved by controlling motor speed and power with feedback signal of pressure of the hydraulic pump. A 2.2kw, 12/8-pole SR motor and DSP based digital controller are designed and prototype drive system is manufactured. The proposed variable speed SR drive system is simulated and tested with experimental set-up. The test results show that the system has some good features such as high efficiency and high response characteristics.

  • PDF

TWO DIMENSIONAL STUDY OF HYDRAULIC FRACTURING CRITERIA IN COHESIVE SOILS

  • 유택영사
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 연약지반처리위원회 봄 학술발표회 논문집 연약지반처리
    • /
    • pp.3-12
    • /
    • 1994
  • Based on the shear failure mechanism, hydraulic fracturing criteria are extended to three dimensional stress state. According to the situation of the directions of borehole and major principal stress axes, three equations can be derived for three dimensional hydraulic fracturing problems. By comparing these equations, a single criterion is selected for hydraulic fracturing pressure in cohesive soils. The criterion is a function of maximum principal stress, minimum principal stress and soil parameters in UU conditions. The equation indicates that with any increase in maximim principal stress, hydraulic fracturing pressure decreases. In order to prove the integrity of the criteria, laboratory tests are performed on compacted cubical specimens using true a triaxial apparatus. The shape and direction of fractures are determined by injecting colored water after fracture initiation. It is found that the direction of fractures are perpendicular to the o1 plane.

  • PDF

온도.비열 가속모형을 적용한 유압호스조립체 수명특성 연구 (A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model)

  • 이기천;김형의;조유희;심성보;김재훈
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권3호
    • /
    • pp.235-244
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipment such as construction machinery, automobile, aircraft, industrial machinery, machine tools and machinery for ships. Also, they are widely used as pipes in oil pressure circuit. When we estimate their lifetime, it is essential to conduct an accelerated life test by choosing the factor that suits the usage condition of the test object since traditional test method for estimating lifetime under the influence of various external factors incurs hardship in terms of time and expenses. The objective of this study is to propose an acceleration model that takes both temperature and pressure without flexing condition into consideration. The lifetime is estimated by applying the proposed temperature-nonthermal acceleration model to the test data. And we compare the proposed temperature-nonthermal acceleration model and the accelerated life equation suggested by John(1994).

대형 자동차 하이브리드 유압 구동시스템의 회로구성과 특성해석에 관한 연구 (A Study on the Circuit Composition and Characteristics Analysis for Heavy-Duty Vehicular Hybrid Hydraulic Driving System)

  • 이재구;이재천;한문식
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.197-204
    • /
    • 2004
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. Also accumulator tests were conducted for different load mass and motor speed. A series of test work were carried out in the laboratory and the dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, were investigated in both brake action and acceleration action and these results show that the proposed design is effective for decision accumulator volume in ERBS.