• Title/Summary/Keyword: Hydraulic Pressure Test

Search Result 483, Processing Time 0.114 seconds

Development of Sealing Technology for Instrumentation Feedthrough of High Pressure Vessel (고압용기의 계장선 통과부위 밀봉기술 개발)

  • Jeong, H.Y.;Hong, J.T.;Ahn, S.H.;Joung, C.Y.;Lee, J.M.;Lee, C.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. The In-Pile Test Section(IPS) installed in HANARO FTL is designed as a pressure vessel design conditions of $350^{\circ}C$, 17.5MPa. The instrumentation MI-cables for thermocouples, SPND and LVDT are passed through the sealing plug, which is in the pressure boundary region and is a part of instrumentation feedthrough of MI-cable. In this study, the brazing method and performance test results are introduced to the sealing plug with BNi-2 filler metal, which is selected with consideration of the compatibility for the coolant. The performance was verified through the insulation resistance test, hydrostatic test, and helium leak test.

Pressurization Characteristics of Piezoelectric-Hydraulic Pump Adopting a Ball-Thin Plate Spring Type Check Valve (볼-박판 스프링 형 체크밸브가 적용된 압전유압펌프의 가압 특성)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 2018
  • In this study, a new check valve was studied to improve the load pressure of a brake system with a small piezoelectric-hydraulic pump. During the pressurization process, the steady-state pressure at the load is affected by the ratio of the cross-sectional area of the check valve the chamber pressure and load pressure. Since the flow path cover of the check valve is made wider than the cross-sectional area of the output flow to prevent backflow, a method of reducing the area ratio is proposed for a higher load pressure by mounting an additional mass to a thin plate spring type check valve. To identify the effect of mounting an additional mass to the existing check valve on the load pressure, a simple brake system with a small piezoelectric-hydraulic pump was modeled using a commercial code AMESim. The AMESim modeling was verified by comparing the simulation results with the experimental results of the pump the existing check valve. The additional mass was added to the verified AMESim modeling and higher load pressure was able to be obtained through simulation. The 35% performance improvement in load pressure identified by carrying out pressurization test of the brake system after adopting the new check valve the small piezoelectric-hydraulic pump.

Hydraulic Parameter Estimation of a Granite Area Using Slug Tests (순간충격시험에 의한 화강암지역의 수리적 매개변수 산출)

  • 함세영;김문수;성익환;이병대;김광성
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.63-79
    • /
    • 2001
  • This study is aimed for estimating hydraulic parameters using the Cooper-Bredehoeft-Papadopulos, the Hvorslev, and the Bouwer & Rice methods at nineteen test holes in Me. Geumjeong area composed of Bulguksa granites, and for characterizing hydraulic properties at the test holes with relatioll to drill core data. The relation among hydraulic Dammeters obtained by the three methods is also considered. The study area is divided into four sub-areas to consider the hydraulic characteristics. The difference of hydraulic conductivity estimates between the injection and the withdrawal slug test may be due to penncable fracture distlibutions around the test hole and/or the disturbance of fine mateIials in the fractures induced by the pressure variation due to different mechanisms of test initiation. The hydraulic conductivity estimates detennined by the Cooper-Bredehoeft-Papadopulos, the Hvorslev and the Bouwer & Rice methods ranges from 10$^{-8}$ to lO$^{-5}$m/sec, and the ranges of average values are from 10$^{-7}$ to 10$^{-6}$m/sec. Also, the transmissivity ranges from 10$^{-7}$ to 10$^{-5}$$m^2$/sec. Comparing average hydraulic conductivity by the Cooper-Bredehoeft-Papadopulos, the Hvorslev and the Bouwer & Rice methods, by the Hvorslev method has the highest values, then the Bouwer & Rice method, and the Cooper-Bredehoeft-Papadopulos method has the lowest.

  • PDF

Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (I) - Cross Rib Arrangements - (각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (I) - 엇갈린 요철 배열 -)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.873-881
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached crossly in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2mm(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (pie) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of cross rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with cross NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with cross NP or PP type ribs.

Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (II) - Parallel Rib Arrangements - (각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (II) - 평행한 요철 배열 -)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.882-890
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached parallel in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2m(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of parallel rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with parallel NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with parallel NN or PN type ribs.

Burst Performance Test of Filament Wound Kick Motor Case (필라멘트 와인딩으로 제작된 킥모터 연소관의 파열 성능 시험)

  • Yi, Moo-Keum;Kil, Gyoung-Sub;Cho, In-Hyun;Park, Jae-Sung;Kim, Joong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.183-186
    • /
    • 2008
  • Both structural analysis and hydraulic test have been conducted to confirm the burst characteristics of filament wound solid motor case. Failure criteria have been defined with bursting above 150% of MEOP and failure in the cylinder. The results of analysis showed that filament fiber in the cylinder should be broken at about 2088psig. From a hydraulic test the same failure mode and the level of 2200psig of burst pressure have been proved. With these results, it is verified that a filament wound case meets burst requirements.

  • PDF

YGN 3 & 4 Reactor Flow Model Test (영광 3, 4호기 원자로 유동 모델 시험)

  • Lee, Kye-Bock;Im, In-Young;Lee, Byung-Jin;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.340-351
    • /
    • 1991
  • Experimental studies were conducted on a l/5.03 scale reactor flow model of the Yong-gwang Nuclear Units 3 and 4. The purpose of the flow model test was to estimate the hydraulic effect in the reactor vessel due to the relative size difference between the ABB-CE's System 80 and the YGN 3&4 reactors. The flow model was designed according to the principle of similarity. Obtained from the test were the core inlet flow distribution, the core exit pressure deviations, and the segmental and overall pressure losses across the flow path from the reactor vessel inlet to outlet nozzle. These data will be used to provide input data for the core thermal margin analysis and to verify the analytical hydraulic design method.

  • PDF

A Study on the Pore Pressure Dissipation Test of the Piezocone (피에오콘의 간극수압 소산시험에 관한 연구)

  • 황대진;김철웅
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.25-36
    • /
    • 1997
  • A degree of consolidation at any time can be evaluated by using cone penetration test after soil improvement. In this case, after stopping the penetration of a piezocone, pore pressure dissipation(PPD) best is carried out until the pore pressure remains constant. Since the hydraulic conductivity of soft ground is very small, it takes very long time to finish the PPD test. This research is performed to develop a method overcoming this problem of the PPD test and reducing the test time. The analyses are carried out in the following ways : an equilibrium pore pressure can be determined by using pore pressure measured in the middle of the test, which is predicted by hyperbolic, Asaoka and Hoshino methods. And this equilibrium pore pressure is compared with the one measured in a test of long duration. As a result of the study, it is found that Hoshino method is the best way to predict the equilibrium pore pressure in a teat of short duration. And it is proposed as a methodology to fond a minimal time in which we can get an equilibrium pore pressure.

  • PDF

A Study on the Model for Effective Hydraulic Fracturing by Using Guide Hole (유도홈을 이용한 효과적인 수압파쇄 모델연구)

  • Mun, Hong Ju;Shin, Sung Ryul;Lim, Jong Se;Jeong, Woo Keen;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.440-448
    • /
    • 2014
  • Hydraulic fracturing technique has been applied in various fields in order to improve the recovery of energy resources such as gas, oil and geothermal energy and research about finding out hydraulic fracturing mechanism and application has been steadily proceeded. In this study, for effective hydraulic fracturing, a scale modeling was progressed to simulate similarly with the actual site. In order to analyze the development aspect of surface crack initiation pressure during hydraulic fracturing followed by different conditions, the number of guide holes hydraulic fracturing test was carried out by setting up a hydraulic fracturing test equipment. Also, through the result, we tried to derive reliable results by comparing and analyzing the value of numerical modeling which is obtained based on the physical properties and mechanical properties with 3DEC, a three-dimensional discrete element method program. As a result, it is considered possible to generate effective crack using the guide hole.

A study on the hydraulic limited slip differential system (유압식 차동제한장치에 관한 연구)

  • 허용;김형익;배봉국;석창성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.131-136
    • /
    • 2004
  • The limited slip differential(LSD) is a device which enables the driving force to be transmitted from one slipping wheel to another wheel in such case that the car is stuck in clay or snow. When the unwanted slipping occurs on one wheel, the LSD temporarily restraints the differential motion to transmit the driving force in the other wheel. So far, many types of LSD were developed such as mechanical lock type, disk clutch type, viscous coupling type, torsion type and multiple clutch type. However these types of LSD is too complicated and expensive, so it is used only for 4WD outdoor vehicles, military vehicles, and a portion of deluxe car. So, many studies has been devoted to improve new types of LSD to cover those demerits of existing LSDs that the hydraulic LSD is developed as arepresentative result of that. The hydraulic LSD which uses the principle of gear pump is packed with viscous oil in tight container. When a slip occurs on one wheel, the hydraulic LSD generates torque caused by high oil pressure in the container. This study has been devoted to suggest an improved hydraulic LSD. In order to achieve it, we designed a new type of hydraulic LSD, produced it and did a rig test with it on real vehicle. From the rig test, it has been confirmed that the new type of hydraulic LSD can be directly applied to exiting vehicles without changing the design criteria

  • PDF