• Title/Summary/Keyword: Hydraulic Pressure Test

Search Result 483, Processing Time 0.023 seconds

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

A Study on the Development of a New Micro Positive Displacement Hydraulic Turbine (마이크로 용적형 수차의 개발에 관한 연구)

  • Lee, Young-Ho;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.284-290
    • /
    • 2006
  • For the case of high head and critical low flow rate range of micro hydropower resources, it requires very low specific speed turbines which are lower than conventional impulse turbine's specific speed. In order to satisfy the request for very low specific speed turbine with high efficiency, a new positive displacement turbine is developed. The performance characteristics of the new turbine is tested and compared with a conventional impulse turbine, which is used for automatic water faucet system. The purpose of present study is to develop an high performance turbine that can be used to extract micro hydropower potential of a water supply system. The test results show that the positive displacement turbine is much more efficient than the conventional turbine and it can sustain high efficiency under the wide range of operating conditions. The pressure pulsations at the inlet and outlet of the positive displacement turbine can be considerably minimized by using simple pressure damper.

A Study on the Formability of Ellipse Panel by Finite Element Method (유한요소법에 의한 타원 판넬의 성형성에 관한 연구)

  • Kang, D.M.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.89-97
    • /
    • 1999
  • In this paper the forming simulations of ellipse bulge have been researched by using $PAM-STAMP_{TM}$ to estimate the sheet metal forming and the plastic deformation characteristic of ellipse bulge. Thin elliptical diaphragms of brass, copper, aluminum, and mild steel are bulged in elliptical dies having aspect ratios of 1.33 and 2. In order to compare the simulation results with the experiment and ellipse bulge's theory derived by using Johnson and Duncan's theory, the relations of hydraulic pressure and polar height, polar thickness strain and polar height, were compared. According to this study, the results of simulation and ellipse bulge's theory derived by using Johnson and Duncan's theory, and the bursting pressure and the bursting polar height are good agreement to the experiment. So, the results of simulation by using $PAM-STAMP_{TM}$ and the ellipse bulge's theory will give engineers good information to make assessment the formability and plastic deformation characteristic of hydraulic ellipse bulge test.

  • PDF

Cavitation Test of a High Pressure Turbopump (터보 펌프의 캐비테이션 실험)

  • Lee, Jong-Min;Kang, Shin-Hyoung;Lee, Kyoung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.16-23
    • /
    • 2004
  • Hydraulic performance and cavitation characteristics of fuel pump in turbopump were studied experimentally. This fuel pump has a centrifugal impeller with a separate inducer. In this paper, static pressure distribution of inducer was examined in non-cavitation and cavitation conditions. As cavitation came, the rising curve of static pressure in front of inducer was lightened because blade lodging did. In result, this offered the mechanism that recirculation zone could be small in case that recirculation was generated in low flow rate.

온도-비열 가속모형을 적용한 유압호스 조립체의 수명특성 연구

  • Lee, Gi-Cheon;Kim, Hyeong-Ui;Jo, Yu-Hui;Sim, Seong-Bo
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.281-288
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipments such as construction machinery, automobile, aircraft, industrial machinery, machine tools, and machinery for ships, or they are used as pipes in oil pressure circuit. However, as the traditional measure for estimating life under the influence of various external factors incurs hardship in terms of time and expenses, it is essential to take accelerated life test by choosing the factor that suits the usage condition of the test object. The objective of the this study is to propose a acceleration model that takes both temperature and pressure without flexing condition into consideration. The life that is calculated by the equation for evaluating life and the test data show similar slopes as a result of comparing and analyzing the equation for evaluating life that is obtained in this research and the test data, which illustrates that they estimate life similarly, and the proposed equation is proved to be an accelerated life equation that presents the test results.

  • PDF

A Study on the Hydrostatic Test of Slipper Pad for Hydraulic Piston Motor (유압 피스톤모터용 Slipper Pad의 정압시험에 관한 연구)

  • 함영복;김광영;김형의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.645-649
    • /
    • 1997
  • In case of swash plate type axial piston hydraulic motor, hydrostatic bearing used to achieve the lubrication effect on the mechanical sliding contact areas between the following parirs ; sliooer-pad and swash plate,piston and cylinder bore,valve plate and cylinder block, etc. This study discussed the basic charateristic for the hydrostatic slipper-pad bearings with the capillary or orifice restrictor under static load condition. And, we also development of hydrostatic bearing tester for hydrostatic balancing test of pistion & slipper-pad assembly, and some experimental data on supply pressure step responce are reported.

  • PDF

A Case Study on Failure and Analysis of Air Over Hydraulic Brake Line (공기 유압식 브레이크 라인 파손 사례 및 파손 분석 연구)

  • Park, Jeongman;Park, Jongjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • In this case study, the brake line failure of air over hydraulic(AOH) brake system is described. AOH brake system is applied to commercial vehicles between 5 to 8 tons. It consists of a hydraulic system using compressed air and operates the air master to form hydraulic pressure to transfer braking power to the wheels. When the brake lines of the system applied to vehicles with high load capacity are damaged, the braking force of one shaft is lost, and the braking distance increases rapidly, leading to a big accident. Failure of the brake line occurs due to various causes such as road surface fragmentation, corrosion of the line, and aged deterioration of air brake hose. The braking force could be decreased even when a very small break in the form of a pin-hole occurs. However, it is difficult to find a part where the thickness of the line is thin due to stone pecking or corrosion generated in the pin-hole formed on the brake line located under the lower part of the vehicle by the sensory evaluation or the conventional braking force test. Accordingly, it is necessary to analyze the condition and cause of the failure of the brake line more precisely when the accident investigation of the heavy vehicles, and also to examine the necessity of the advanced test for the aged brake line.

Manufacturing and Performance Test of Obsolete Valve in NPP using DED Metal 3D Printing Technology (원전 단종 밸브의 DED 방식 금속 3D프린팅 제작 및 성능시험)

  • Kyungnam Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • The 3D printing technology is one of the fourth industrial revolution technology that drives innovation in the manufacturing process, and should be applied to nuclear industry for various purposes according to the manufacturing trend change. In nuclear industry, it can be applied to manufacture obsolete items and new designed parts in advanced reactors or small modular reactors (SMRs), replacing the traditional manufacturing technologies. A gate valve body was manufactured, which was obsolete in nuclear power plant, using DED(Directed Energy Deposition) metal 3D printing technology after restoring design characteristics including 3D design drawing by reverse engineering. The 3D printed valve body was assembled with commercial parts such as seat-ring, disk, stem, and actuator for performance test. For the valve assembly, including 3D printed valve body, several tests were performed, including pressure test, end-loading test, and seismic test according to KEPIC MGG and KEPIC MFC. In the pressure test, hydraulic pressure of 391kgf/cm2 was applied to 3D printed valve body, and no leak was detected. Also the 3D printed valve assembly was performed well in end-loading and seismic tests.

A Development of Proportional Control Solenoid Valve Performance Tester for Automatic Transmission (자동변속기용 비례제어 솔레노이드밸브 성능시험기 개발)

  • Lee, G.H.;Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • The proportional control solenoid valves as well as the PWM solenoid valves operated by electric signal play an important role in the hydraulic system for automatic transmissions to improve the shift quality. However it is not generally available for the performance data because most of the automotive parts manufacturer don't release the specific test results, especially dynamic performance that is essential to design a shift control algorithm. In this research, a performance test equipment that can be applied to various types of pressure control solenoid valve was developed. It was implemented by 8-bit micro-controller with many useful functions such as adjustable PWM carrier frequency, embedded function generator, current controller, data monitoring and acquisitions, etc. for the test of dynamic performance of solenoid valve as well as the steady-state pressure characteristics. The performance test results for the direct type proportional control solenoid valve show not only the validity of overall functions but also its usefulness as a hydraulic valve tester.

  • PDF

Development of Cryogenic Turbopump Test Facility (극저온 터보펌프 성능시험설비의 개발)

  • Kang, Jeong-Seek;Kim, Jin-Sun;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.340-345
    • /
    • 2003
  • Cryogenic turbopump test facility(CTTF) is designed and developed. Hydraulic and cavitation performance of turbopump in cryogenic environment can be measured. Working fluid is liquid nitrogen and operating temperature is $-197^{\circ}C$. Liquid nitrogen run tank, catch tank and pressurizing tank has been built and remote tank pressure control system are installed. Maximum power of turbopump is 320kW and its maximum speed is 32000rpm. Cryogenic fluids and lubricating systems are effectively separated that long test times are acquired. Therefore hydraulic and cavitation performance can be measured accurately and effectively. This facility will contribute greatly to the development of turbopump for KSLV.

  • PDF