• 제목/요약/키워드: Hydraulic Press

Search Result 424, Processing Time 0.02 seconds

Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation

  • Kim, Yong-Min;Park, Taehyung;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.485-496
    • /
    • 2019
  • Sealing of leakage in waterfront or water-retaining structures is one of the major issues in geotechnical engineering practices. With demands for biological methods as sustainable ground improvement techniques, bioclogging, defined as the reduction in hydraulic conductivity of soils caused by microbial activities, has been considered as an alternative to the chemical grout techniques for its economic advantages and eco-friendliness of microbial by-products. This study investigated the feasibility of bioaugmentation and biostimulation methods to induce fermentation-based bioclogging effect in coarse sands. In the bioaugmentation experiments, effects of various parameters and conditions, including grain size, pH, and biogenic gas generation, on hydraulic conductivity reduction were examined through a series of column experiments while Leuconostoc mesenteroides, which produce an insoluble biopolymer called dextran, was used as the model bacteria. The column test results demonstrate that the accumulation of bacterial biopolymer can readily reduce the hydraulic conductivity by three-to-four orders of magnitudes or by 99.9-99.99% in well-controlled environments. In the biostimulation experiments, two inoculums of indigenous soil bacteria sampled from waterfront embankments were prepared and their bioclogging efficiency was examined. With one inoculum containing species capable of fermentation and biopolymer production, the hydraulic conductivity reduction by two orders of magnitude was achieved, however, no clogging was found with the other inoculum. This implies that presence of indigenous species capable of biopolymer production and their population, if any, play a key role in causing bioclogging, because of competition with other indigenous bacteria. The presented results provide fundamental insights into the bacterial biopolymer formation mechanism, its effect on soil permeability, and potential of engineering bacterial clogging in subsurface.

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

Effect of Radial Parameters in Cogging Process on Void Closure for Large Forged Products (단강품 기공의 압착성 향상을 위한 레이디얼 단련변수의 영향)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, J.H.;Baek, D.K.;Choi, S.K.;Park, H.J.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.67-70
    • /
    • 2008
  • This paper deals with the effect of radial parameters in cogging process such as reduction in height (Rh) and rotational angle ($\theta$) of a billet on a void closure for large forged products. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products, using a press with limited capacity and the sizes of the ingots becoming larger. Consequently, it is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; $\emptyset$ 6.0 mm and $\emptyset$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. Also open void and closed void in the ingot were tackled to show the differentiation of closing process of internal voids with respect to void sizes. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process.

  • PDF

A Study of Semi Fine-blanking Mold Analysis using Finite Element Method (유한요소법을 이용한 세미 파인-블랭킹 금형 해석에 관한 연구)

  • Lee, Sang-Hun;Song, Gi-Hwan;Son, Chang-Woo;Seo, Hyoung-Jin;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.51-54
    • /
    • 2016
  • Metal sheet forming has been commonly used as the core technology in manufacturing parts of automobiles. It guarantees the highest production rate due to the process of mass production employing the press die. For precision of the product, the accuracy of the molds and its mechanic structures are considered as essential factors. One of these is fine blanking, which is utilized for the production of the metal sheet spring, with which clear sheer surfaces can be achieved in one operation from the materials. However, the current designs of press dies perform the forming analysis with the molds of rigid body, so they are focused on weight lightening by a rule of thumb. Therefore, this paper practice structural analysis about developing the semi fine-fine blanking technology. The semi fine-blanking can be run through the combination of the hydraulic cylinders and normal presses, so this paper analyze the amount of deformation according to the oil pressure. In addition, based on the plasticity of 50CrV4, the materials of the mold parts, the structural analysis and life analysis are proceeded, so they are expected to be useful as data for manufacturing the mold.

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

Experimental and numerical verification of hydraulic displacement amplification damping system

  • Chung, Tracy Sau-Kwai;Lam, Eddie Siu-Shu;Wu, Bo;Xu, You-Lin
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Hong Kong is now recognized as an area of moderate seismic hazard, but most of the buildings have been designed with no seismic provision. It is of great significance to develop effective and practical measures to retrofit existing buildings against moderate seismic attacks. Researches show that beam-column joints are critical structural elements to be retrofitted for seismic resistance for reinforced concrete frame structures. This paper explores the possibility of using a Hydraulic Displacement Amplification Damping System (HDADS), which can be easily installed at the exterior of beam-column joints, to prevent structural damage against moderate seismic attacks. A series of shaking table tests were carried out with a 1/3 prototype steel frame have been carried out to assess the performance of the HDADS. A Numerical model representing the HDADS is developed. It is also used in numerical simulation of the shaking table tests. The numerical model of the HDADS and the numerical simulation of the shaking table tests are verified by experimental results.

Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests

  • Liu, Donghai;Yang, Jiaqi
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.189-206
    • /
    • 2020
  • The accurate modeling of boundary conditions is important in simulations of the discrete element method (DEM) and can affect the numerical results significantly. In conventional triaxial compression (CTC) tests, the specimens are wrapped by flexible membranes allowing to deform freely. To accurately model the boundary conditions of CTC, new flexible boundary algorithms for 2D and 3D DEM simulations are proposed. The new algorithms are computationally efficient and easy to implement. Moreover, both horizontal and vertical component of confining pressure are considered in the 2D and 3D algorithms, which can ensure that the directions of confining pressure are always perpendicular to the specimen surfaces. Furthermore, the boundaries are continuous and closed in the new algorithms, which can prevent the escape of particles from the specimens. The effectiveness of the proposed algorithms is validated by biaxial and triaxial simulations of granular materials. The results show that the algorithms allow the boundaries to deform non-uniformly on the premise of maintaining high control accuracy of confining pressure. Meanwhile, the influences of different lateral boundary conditions on the numerical results are discussed. It is indicated that the flexible boundary is more appropriate for the models with large strain or significant localization than rigid boundary.

Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement

  • Kumara, S. Anandha;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • The choice of eco-friendly materials for ground improvement is a necessary way forward for sustainable development. Adapting naturally available biopolymers will render the process of soil stabilization carbon neutral. An attempt has been made to use β-glucan, a natural biopolymer for the stabilization of lean clay as a sustainable alternative with specific emphasis on comprehending the effect of confining stresses on lean clay through triaxial compression tests. A sequence of laboratory experiments was performed to examine the various physical and mechanical characteristics of β-glucan treated soil (BGTS). Micro-analysis through micrographs were used to understand the strengthening mechanism. Results of the study show that the deviatoric stress of 2% BGTS is 12 times higher than untreated soil (UTS). The micrographs from Scanning Electron Microscopy (SEM) and the results of the Nitrogen-based Brunauer Emmett Teller (N2-BET) analysis confirm the formation of new cementitious fibres and hydrogels within the soil matrix that tends to weld soil particles and reduce the pore spaces leading to an increase in strength. Hydraulic conductivity (HC) and compressibility reduced significantly with the biopolymer content and curing period. Results emphases that β-glucan is an efficient and sustainable alternative to the traditional stabilizers like cement, lime or bitumen.

Application of magnesium to improve uniform distribution of precipitated minerals in 1-m column specimens

  • Putra, Heriansyah;Yasuhara, Hideaki;Kinoshita, Naoki;Hirata, Akira
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.803-813
    • /
    • 2017
  • This study discussed the possible optimization of enzyme-mediated calcite precipitation (EMCP) as a soil-improvement technique. Magnesium chloride was added to the injection solution to delay the reaction rate and to improve the homogenous distribution of precipitated minerals within soil sample. Soil specimens were prepared in 1-m PVC cylinders and treated with the obtained solutions composed of urease, urea, calcium, and magnesium chloride, and the mineral distribution within the sand specimens was examined. The effects of the precipitated minerals on the mechanical and hydraulic properties were evaluated by unconfined compressive strength (UCS) and permeability tests, respectively. The addition of magnesium was found to be effective in delaying the reaction rate by more than one hour. The uniform distribution of the precipitated minerals within a 1-m sand column was obtained when 0.1 mol/L and 0.4 mol/L of magnesium and calcium, respectively, were injected. The strength increased gradually as the mineral content was further increased. The permeability test results showed that the hydraulic conductivity was approximately constant in the presence of a 6% mineral mass. Thus, it was revealed that it is possible to control the strength of treated sand by adjusting the amount of precipitated minerals.