• Title/Summary/Keyword: Hydraulic Piston Pump

Search Result 128, Processing Time 0.032 seconds

The study on the friction characteristics of spherical hydrostatic bearing for hydraulic piston motor (유압모터 구면 정압베어링의 마찰특성에 관한 연구)

  • 함영복;최영호;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.647-650
    • /
    • 2001
  • In case of bent axis type axial piston hydraulic pump or motor, hydrostatic bearing used to achieve the lubrication effect on the mechanical sliding contact areas between the following pairs ; piston shoe and swash plate, valve plate and cylinder block, piston and cylinder block, etc. In this research, we designed two pairs of spherical ball joint in witch connecting rod piston end. The one is not hydrostatic bearing, the other is designed with spherical hydrostatic bearing in point of view minimum pumping power loss. By varying supply pressure on the piston, we can know that it is possible to reduce the friction torque by using hydrostatic bearing designed one. Finally, by comparing the results of driving torque between the two models, it was verified that the spherical hydrostatic bearing is well designed.

  • PDF

The Lubrication Characteristics According to the Rotating Radius of Piston in a Swash-Plate Type Piston Pump (사판식 피스톤 펌프의 피스톤 회전 반경에 따른 윤활 특성)

  • Cho, Ihn Sung;Jung, Jae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.749-753
    • /
    • 2013
  • Hydraulic systems are used to transform mechanical energy and fluid energy into each other. Its applications are very wide over the whole industries such as automobiles, public works, rockets, machine tools, construction heavy equipments, airplaces and so on. They are hydraulic pumps that transform energy in the systems. In this study, with basic operation principles as a start point, I tried to understand how the rotating radius of a piston affects the lubrication characteristics in more practical conditions, a swash-plate with tilt angle zero capable of rotating motion and other devices was used. In this paper, a slipper was located on 45mm eccentricity from the center of a swash-plate. As a result, through this experiment, it was found that the rotating radius of a piston affects load capacity, leakage flow and lubrication characteristics and it is one of the important parts for improving the pump efficiency.

A Reduction in Pressure Ripples of Axial Piston Pumps of Bent Axis by Phase Interface (위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력 맥동 감소)

  • Kim, Kyung-Hoon;Park, Kyung-Seok;Jang, Ju-Sub;Kim, Bong-Hwan; Lee, Kyu-Won;Son, Kwon;Shin, Min-Ho
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1261-1265
    • /
    • 2003
  • Axial piston pumps of bent axis have been commonly used in hydraulic systems because of high pressure level. best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the axial piston pumps of bent axis require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the axial piston pumps of bent axis was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a paralle linel could reduce the discharge pressure wave of the pump well. The analysis model of the axial piston pumps of bent axis developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

  • PDF

Finite Element Approach to Socket Shape Design of a Concave Piston Assembly for a High Pressure Hydraulic Pump (유한요소법을 이용한 고압유압펌프용 오목형 피스톤 조립체의 소켓 형상 설계)

  • Eom J.G.;Lee M.C.;Choi I.S.;Joun M.S.;Cho Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.403-404
    • /
    • 2006
  • A finite-element based approach to socket shape design of a concave piston assembly for a high pressure hydraulic pump of an excavator is presented in this paper. The approach is applied to developing a concave piston assembly which fulfills its strength requirement and it is verified that the predictions are in good agreement with the experiments.

  • PDF

An Experimental Study on the Efficiency of the Water Hydraulic Piston Pump System driven by an Electric Inverter (전기 인버터 구동 수압 피스톤 펌프 시스템의 효율 성능에 관한 실험적 연구)

  • Ham, Y.B.;Park, J.H.;Kim, S.D.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • A water hydraulic pump is likely to have serious problems of high leakage, friction and low energy efficiency. A water hydraulic pump has commonly a fixed displacement type and its outlet flow is adjusted by controlling rotation speed of the pump, which can be implemented by using an electric inverter. This study aims to investigate energy efficiency of the water hydraulic pump system which is driven by an electric inverter. The study is based on the experimental results. The pump which is used in the study shows relatively good efficiency and low leakage, low friction as well. The reasons for the good performance of pump is also investigated.

  • PDF

A Study on the Stress Analysis of Oil Hydraulic Piston Pump with a Swash Plate Type (사판식 유압 피스톤 펌프의 응력해석에 관한 연구)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2424-2429
    • /
    • 2015
  • In an oil hydraulic piston pump, the cylinder block and valve plate in high speed relative sliding motion have the characteristics which should be extremely controlled for the optimization of leakage and friction losses, and pressure-resistance design of them is very important for high pressure performance. But the studies on the stress analysis of those parts have not been performed briskly. Therefore, in this paper, the stress and displacement distributions of the cylinder block and valve plate in the oil hydraulic piston pump with a swash plate type are discussed through the static stress analysis using CATIA V5. The stress and displacement of the cylinder block are more influenced by the axial pressure than by the radial pressure, and are larger by approximately 66% and 30%, respectively. The results show that a review of the material and shape of the valve plate is required.

Characteristics of Lubrication between Slipper and Swashplate in Swashplate Type Hydraulic Piston Pump (사판식 유압 피스톤 펌프의 슬리퍼와 사판 간의 윤활 특성)

  • Cho, Ihnsung
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.186-191
    • /
    • 2013
  • Hydraulic systems are used to transform mechanical energy into fluid energy and vice versa. They are widely applied in various industries; e.g., they are used in automobiles, public works, rockets, machine tools, heavy construction equipment, and airplanes. Hydraulic pumps are used to transform the energy in these systems. In this study, with the basic operation principles as a starting point, I attempted to clarify how the shape of a slipper affects the lubrication characteristics under practical conditions. A swashplate with a tilt angle of zero and capable of rotating motion was used, along with other devices. A slipper was located at 45 mm eccentricity from the center of the swashplate. The results of this experiment indicated that the shape of the bottom surface of a slipper affects the load capacity, leakage flow, and lubrication characteristics and that the slipper is one of the most important parts for improving the pump efficiency.

Measuring Experiment of Resistance Force on a Reciprocating Motion of Rod Type Piston (로드형 피스톤의 왕복운동 저항력 측정실험)

  • 함영복;박경민;김성동;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.486-489
    • /
    • 2003
  • To reduce lateral force of traditional plunger type piston in the swash plate type hydraulic piston pumps and motors, we have proposed rod type piston with ball joint on both ends. We have studied the theoretical reaction force on two types of piston moving in the cylinder block bore. and made an experiment for the resistance force measurement on a reciprocating motion of plunger and rod type piston, changing the test condition such as swash plate angel and supply oil pressure and so on. As a result. a rod type piston has more smaller resistance force, about 29%. than a plunger type one.

  • PDF

A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type (선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구)

  • Yi, Jong-ju;Ahn, Kang-su;Sur, Jong-mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.

Flow Ripple Simulation Model of Axial Piston Pump (액시얼 피스톤 펌프의 맥동유량 시뮬레이션 모델)

  • Lee I.Y.;Park J.H.;Kang M.G.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.3
    • /
    • pp.12-17
    • /
    • 2005
  • This paper presents a theoretical study of the delivery flow ripple produced by a swash plate type hydraulic piston pump for the purpose of developing a computer simulation program capable of predicting the pump source flow ripple accurately at the design stage. Particular attention has been paid to the development of the theoretical model by clarifying quantitatively the design influences of key parts of valve plate such as relief groove and pre-compression/expansion.

  • PDF