• Title/Summary/Keyword: Hydraulic Piston Pump

Search Result 128, Processing Time 0.029 seconds

Flow Analysis in a Slipper Bearing for Swash Plate Type Axial Piston Pump (사판식 유압 피스톤 펌프용 Slipper Bearing내의 유동해석)

  • Park, Tae-Jo;Yoo, Jae-Chan
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.343-348
    • /
    • 2008
  • In this paper, a CFD (Computational fluid dynamics) code, FLUENT is adopted to investigate accurate flow characteristics for a slipper bearing which is used swash plate type hydraulic axial piston pump. Static pressure and velocity distributions, and velocity vectors are plotted for different film thickness and slipper rotational velocity. In recess region, there exists a doughnut shaped vortex ring. The static pressure distributions are non-uniform and the flow fields are highly asymmetrical under bearing rotation. Therefore the numerical method adopted in this paper can be use in design of hydrostatic components and further studies are required.

A Study on Pressure Ripple of Axial Piston Pump using Branch Hose (분기관을 이용한 피스톤 펌프의 압력 맥동에 관한 연구)

  • Lee, Hong-Seon;Lim, Tae-Hyeong;Chun, Se-Young;Kwon, Soon-Kwang;Lee, Chang-Don;Yang, Soon-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.117-124
    • /
    • 2007
  • The pressure ripple in most hydraulic systems is the root cause of their noise and vibration. This paper reduced the pressure ripple using side branch hose for an axial piston pump applied to small excavator. First, in calculating open area, a new method using groove area of valve plate is proposed. Simulation model in AMESim environment is developed to verify proposed method, find effective length and diameter of branch hose. Finally, the comparisons with experiment results show that the proposed method is more effective than previous method in reducing the pressure ripple.

A Study on Pressure, Flow Fluctuation and Noise in the Cylinder of Swash Plate Type Axial Piston Pump (사판식 피스톤형 유압펌프에서의 실린더내 압력, 맥동, 소음에 관한 실험적 연구)

  • Jang, D.H.;Lee, S.K.;Kwon, J.H.;Park, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Noise reduction for hydraulic pump is strongly demanded in the market with its efficiency and durability. In order to meet this demand, it is necessary to reveal mechanism for noise and relationship between the important factors. In this paper, mathematical model for cylinder pressure which is primary reason of pulsation and sound noise were established, and examined its pressure profile by simulation. Also, the valve plate of three kind types are manufactured and tested for piston pressure, pressure pulsation, and sound power level based on the tentative standard which is officially recognized.

  • PDF

A Study on the Driving of Rods in Hydraulic Bent-axis-type Axial Piston Pump Part 1: The Theoretical Analysis of Driving Mechanism (유압 사축식 액셜 피스톤 펌프의 로드 구동에 관한 연구 제1보: 구동 메카니즘의 이론해석)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • Recently, bent-axis-type axial piston pumps driven by rods being in extensively used in the world, because of simple design, lightweight, effective cost. So, to guarantee the quality of bent-axis-type axial piston pumps driven by rods, it is necessary to know characteristics of the driving mechanism of rods. But, as they perform both reciprocating and spinning motions, it is difficult to understand driving mechanism. In this paper, I studied the theoretical driving mechanisms of cylinder block driven by rods through geometric method. I found that the cylinder block was driven by one rod in limited area and the driving area was changed by rod's tilting angle and cylinder block's swivel angle.

Measurment of Fluid Film Thickness on The Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II : Spherical Design Effects)

  • Kim Jong-Ki;Kim Hyoung-Eui;Lee Yong-Bum;Jung Jae-Youn;Oh Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.655-663
    • /
    • 2005
  • Tribological characteristics in the sliding parts of oil hydraulic piston pumps are very important in increasing overall efficiency. In this study, the fluid film between the valve plate and the cylinder block was measured by using a gap sensor and the mercury-cell slip ring unit under real working conditions. To investigate the effect of the valve shape, we designed three valve plates each having a different shape. One of the valve plates was without bearing pad, another valve plate had bearing pad and the last valve plate was a spherical valve plate. It was noted that these three valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rates and the shaft torque were also investigated in order to clarify the performance difference between these three types of valve plates. From the results of this study, we found that the spherical valve plate estimated good fluid film patterns and good performance more than the other valve plates in oil hydraulic axial piston pumps.

Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston rumps (I) - Bearing Pad Effects -

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes . the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad.

Hydraulic Pumps Driven by Multilayered Piezoelectric Elements -Mathematical Model and Application to Brake Device -

  • Konishi, Katunobu;Ukida, Hiroyuki;Sawada, Koutarou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.474-479
    • /
    • 1998
  • In this paper, we present a mathematical model of the piezoelectric pump and its application to the automobile brake system. The piezoelectric pump consists of a multi-layered piezoelectric element a diaphragm, pumping values, resonant pipes and accumulators, and the maximum pumping power of 62W nab obtained in the previous experiments by using the piezoelectric element of 22mm diameter and 55.5mm length. A detailed mathematical model of the pump is derived here by considering the compressibility of the working oil, nonlinear characteristics of piezoelectric element, the time delay of pumping values' action and be on. The validity of the model is illustrated by comparing the experimental data and the simulation results. Using the mathematical model of the piezoelectric pump, a brake system for automobile disk brake is also simulated in this paper. The brake system consists of a piezoelectric pump as a power source, calipers and its piston to generate brake force, and a three position solenoid value to change the brake situation. It is shown that 15mm/sec of piston speed and 20kN of piston force are obtained by using the piezoelectric element of 33mm diameter and 55.5mm length.

  • PDF