• 제목/요약/키워드: Hydraulic Model Experiment

검색결과 314건 처리시간 0.026초

황해연안해성의 물질확산에 관하여 (Diffusion in Coastal Waters of the Yellow Sea)

  • 이종섭;김차겸;장선덕;김종학
    • 한국해안해양공학회지
    • /
    • 제4권4호
    • /
    • pp.261-270
    • /
    • 1992
  • 서해안에 위치한 태안근해에서 대조기 때 유동특성 및 물질확산을 연구하기 위해서 조류, 염료운 및 온배수의 확산에 대한 현장관측, 수리실험 및 수치실험을 실시하였다. 현장관측, 수리 및 수치실험에 의한 유황은 상호간에 대체로 잘 일치하였다. 현장에서 조류는 해안선을 따라 낙조류시에는 남서방향으로, 창조류시에는 북동방향으로 탁월하게 흐르고, 대상영역내 최대유속은 WSW 방향으로 2.13㎧로 관측되었다. 현장에서 유속관측치로부터 구한 Eulerian 확산계수는 7.82$\times$$10^{5}$ $ extrm{cm}^2$/s이다. 수리모형에서 염료운의 면적으로부터 구한 확산계수는 0.18 $r^{(4}$3)/이며, 그 크기는 $10^{5}$ ~$10^{6}$$\textrm{cm}^2$/s로서 현장에서 Eulerian 확산계수와 비슷하게 나타났다. 모형실험에 의한 당 해역의 확산계수는 남해안에 위치한 진해만에서 구한 확산계수보다는 2~3 order, 동해안에 위치한 온산만에서 구한 확산계수보다는 1~2 order 크게 나타났다. 화전(1975)의 2차원 수치모델을 적용한 결과 얻어진 온배수의 확산양상은 수리실험에 의한 염료운의 확산양상과 유사하게 나타났다. 수리실험 및 수치실험 결과에 의하면, 태안해역의 물질확산은 창조류 때보다 낙조류 때 탁월하게 일어났다.다.

  • PDF

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2) (Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2))

  • 박정욱;;;;박의섭
    • 터널과지하공간
    • /
    • 제29권3호
    • /
    • pp.197-213
    • /
    • 2019
  • 본 연구에서는 TOUGH-FLAC 연동해석기법을 이용하여 Mont Terri 지하연구시설에서 수행된 단층 내 물 주입시험을 수치적으로 모델링하고, 단층의 재활성과 수리역학적 거동 특성을 살펴보았다. TOUGH2 해석에서는 단층을 Darcy의 법칙과 삼승법칙(Cubic law)을 따르는 연속체 요소로 모델링하였으며, FLAC3D 해석에서는 미끄러짐과 개폐가 허용되는 불연속 인터페이스 요소를 통해 모사하였다. 현장에서 획득한 단층의 균열개방압력(fracture opening pressure), 주입율, 모니터링 압력, 변위 곡선 등을 바탕으로, 단층의 탄성적 변형과 파괴에 의한 수직팽창 특성을 반영할 수 있는 수리간극모델과 수리역학 커플링 관계를 해석모델에 반영하였다. 한편, 현지응력 조건, 단층의 강도 및 변형 특성에 따른 파라미터 해석을 실시하여 각 입력변수가 해석 결과에 미치는 영향을 분석하였으며, 이를 통해 현장시험 결과를 가장 잘 재현할 수 있는 파라미터 조합을 선정하였다. 해석 결과, 균열개방압력에서 단층의 주입율과 모니터링 압력이 크게 증가하는 현상을 합리적으로 재현할 수 있었다. 하지만, 동일한 입력 변수 조건에서 단층의 전단변위와 파괴영역의 범위는 현장시험 결과에 비해 과대평가되는 결과를 보였다. 이는 해석모델에서는 고압의 주입조건에서 단층의 지속적인 전단파괴가 유도되는 반면, 현장에서는 수리간극의 변화가 전단 미끄러짐보다는 인장력에 의한 단층면의 개방(tensile opening)에 크게 의존하는 것으로 추정되기 때문이다.

IMPROVING HABITAT OF FORMOSAN LANDLOCKED SALMON BY DAM REMOVAL

  • Yeh, Chao-Hsien;Lien, Hui-Pang
    • Water Engineering Research
    • /
    • 제6권4호
    • /
    • pp.149-159
    • /
    • 2005
  • With increasing recognition on conservation of endangered species in Taiwan, one of the major conservation projects is the habitat restoration of Formosan Landlocked Salmon which is major threatened by check dams in the channel for their blockading pathway to upstream and causing the problems of population isolation and close-blood mating. By creating an opening in the central dam body appropriately, partial removal dams can provide pathway for the fish for the better upstream channel habitat. Four check dams at Gau-Shan Creek were remodeled between April of 1999 and September of 2002 with information supported from model experiments under certain hydraulic condition of field environment. Based on the follow-up investigation, the channel morphology of observation sections is in stable condition and the total number of Formosan Landlocked Salmon in this creek increased promptly at the reach containing partial-removed dams.

  • PDF

DDV를 이용한 압력 제어시스템의 강인제어 (Robust Control of Pressure Control System Using Direct Drive Valve)

  • 이창돈;박성환;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1077-1082
    • /
    • 2005
  • In this paper, it is proposed that the method for constituting pressure control system controlled by Direct Drive Valve (DDV). The DDV has a pressure-feedback-loop itself. It can eliminate non-linearity and uncertainty oi hydraulic system such as uncertain discharge coefficient and change of bulk-modulus. However, the internal feedback-loop can not compensate them perfectly. And fixed gain of the DDV's internal feedback-loop is not proper to apply it through wide pressure range. The steady state error and nonlinear characteristic of transient behaviour is observed in the experiment. So another controller is needed for the desirable performance of the system. To compose the controller, the pressure control system controlled by DDV is modeled mathematically and the parameters of the model are identified using signal-compression method. Then sliding mode controller is designed based on mathematical model. Desirable performance of the pressure control system controlled by DDV is obtained.

마이크로채널 내의 FC-72 흐름응축에 관한 수치적 연구 (Numerical Study on FC-72 Condensing Flow in a Micro-Channel)

  • 김성민
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.30-34
    • /
    • 2015
  • This study concerns flow and heat transfer characteristics of FC-72 condensing flow in a micro-channel. A computational model of condensing flow with a hydraulic diameter of 1 mm is constructed using the FLUENT computational fluid dynamics code. The computed void fraction contour plots are presented for different mass velocities. The smooth-annular, wavy-annular, transition and slug flows are observed with the model, which are quite similar to those observed in a micro-channel experiment. The computed two-phase condensing heat transfer coefficient is compared with previous empirical correlation for two-phase condensation heat transfer in micro-channels.

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

BEPU analysis of a CANDU LBLOCA RD-14M experiment using RELAP/SCDAPSIM

  • A.K. Trivedi;D.R. Novog
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1448-1459
    • /
    • 2023
  • A key element of the safety analysis is Loss of Coolant Analysis (LOCA) which must be performed using system thermal-hydraulic codes. These codes are extensively validated against separate effect and integral experiments. RELAP/SCDAPSIM is one such code that may be used to predict LBLOCA response in a CANDU reactor. The RD-14M experiment selected for the Best Estimate Plus Uncertainty study is a 44 mm (22.7%) inlet header break test with no Emergency Coolant Injection. This work has two objectives first is to simulate pipe break with RELAP and compare these results to those available from experiment and from comparable TRACE calculations. The second objective is to quantify uncertainty in the fuel element sheath (FES) temperature arising from model coefficient as well as input parameter uncertainties using Integrated Uncertainty Analysis package. RELAP calculated results are found to be in good agreement with those of TRACE and with those of experiments. The base case maximum FES temperature is 335.5 ℃ while that of 95% confidence 95th percentile is 407.41 ℃ for the first order Wilk's formula. The experimental measurements fall within the predicted band and the trends and sensitivities are similar to those reported for the TRACE code.

산불 발화에 따른 하층 대기 순환장 변화에 관한 수치 실험 (Numerical Experiment on the Variation of Atmospheric Circulation due to Wild Fire)

  • 이화운;탁성훈;이순환
    • 한국환경과학회지
    • /
    • 제22권2호
    • /
    • pp.173-185
    • /
    • 2013
  • In order to clarify the impact of wildfire and its thermal forcing on atmospheric wind and temperature patterns, several numerical experiments were carried out using three dimensional atmospheric dynamic model WRF with wildfire parametrization module SFIRE. Since wind can accelerate fire spread speed, the moving speed of fireline is faster than its initial values, and the fireline tends to move the northeast, because of the wind direction and absolute vorticity conservation law associated with driving force induced by terrain. In comparison with non-fire case, the hydraulic jump that often occurs over downwind side of mountain became weak due to huge heat flux originated by surface wildfire and wind pattern over downwind side of mountain tends to vary asymmetrically with time passing. Therefore temporal variation of wind pattern should be catched to prevent the risk of widfire.

조위차 극복형 잠제의 파랑제어 (Wave Control by Tide-Adapting Submerged Breakwater)

  • 이우동;정연명;허동수
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.573-580
    • /
    • 2019
  • A submerged breakwater is a coastal structure built under water with excellent landscape. The depth of the crest of the breakwater should be maintained at more than a certain level in order for the submerged breakwater to control waves properly. This means that the effect of blocking waves deceases sharply at high tide in coastal areas with large tidal differences. In this study, we proposed a Tide-Adapting Submerged Breakwater (TA-SB) to overcome this problem, and then we conducted hydraulic model experiments to evaluate the performance of the TA-SB for controlling waves. The experimental results showed that the tapered wings attached to the crest of the TA-SB helped induce forced breaking waves. In particular, they were very effective in blocking waves and attenuating wave energy at high tide. In addition, the wave control performance of the proposed TA-SB was far superior to the Tide-Adapting Low-Crested Structure (TA-LCS) of the previous study.