• Title/Summary/Keyword: Hydraulic Dam

Search Result 278, Processing Time 0.022 seconds

Deformation and stress behavior analysis of high concrete dam under the effect of reservoir basin deformation

  • Zheng, Dongjian;Xu, Yanxin;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Zhao, Erfeng
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1153-1173
    • /
    • 2016
  • According to deformation data measured in some high concrete dams, for dam body deformation, there is a complex relationship with dam height and water head for different projects, instead of a simple monotonic relationship consistently. Meanwhile, settlement data of some large reservoirs exhibit a significant deformation of reservoir basin. As water conservancy project with high concrete dam and large storage capacity increase rapidly these decades, reservoir basin deformation problem has gradually gained engineers' attentions. In this paper, based on conventional analytical method, an improved analytical method for high concrete dam is proposed including the effect of reservoir basin deformation. Though establishing FEM models of two different scales covering reservoir basin and near dam area respectively, influence of reservoir basin on dam body is simulated. Then, forward and inverse analyses of concrete dam are separately conducted with conventional and proposed analytical methods. And the influence of reservoir basin deformation on dam working behavior is evaluated. The results of two typical projects demonstrate that reservoir basin deformation will affect dam deformation and stress to a certain extent. And for project with large and centralized water capacity ahead of dam site, the effect is more significant than those with a slim-type reservoir. As a result, influence of reservoir basin should be taken into consideration with conducting analysis of high concrete dam with large storage capacity.

Evaluation of hydraulic fracturing of rockfill dam during first filling by measurement and numerical analysis (계측 및 수치해석에 의한 초기담수시 사력댐 코어존 수압할렬 안정성 분석)

  • Lee, Jong-Wook;Cho, Sung-Eun;Kim, Ki-Young;Lim, Heui-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.799-805
    • /
    • 2008
  • In this study load transfer and hydraulic fracturing of core zone of object rockfill dam are estimated and monitored by a numerical analysis and a instrumentation immediately after the construction and during the first impounding. The estimated results are compared with the monitored results. It reveal that the core zone is safe on the hydraulic fracturing.

  • PDF

Copula entropy and information diffusion theory-based new prediction method for high dam monitoring

  • Zheng, Dongjian;Li, Xiaoqi;Yang, Meng;Su, Huaizhi;Gu, Chongshi
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Correlation among different factors must be considered for selection of influencing factors in safety monitoring of high dam including positive correlation of variables. Therefore, a new factor selection method was constructed based on Copula entropy and mutual information theory, which was deduced and optimized. Considering the small sample size in high dam monitoring and distribution of daily monitoring samples, a computing method that avoids causality of structure as much as possible is needed. The two-dimensional normal information diffusion and fuzzy reasoning of pattern recognition field are based on the weight theory, which avoids complicated causes of the studying structure. Hence, it is used to dam safety monitoring field and simplified, which increases sample information appropriately. Next, a complete system integrating high dam monitoring and uncertainty prediction method was established by combining Copula entropy theory and information diffusion theory. Finally, the proposed method was applied in seepage monitoring of Nuozhadu clay core-wall rockfill dam. Its selection of influencing factors and processing of sample data were compared with different models. Results demonstrated that the proposed method increases the prediction accuracy to some extent.

Analysis of Hydraulic Characteristics of River by Soyanggang Dam Discharge (소양강댐 방류량에 따른 하천의 수리특성 분석)

  • Jun, Kye-Won;Jun, Byong-Hee;Lee, Ho-Jin;Oh, Chae-Yeon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.715-718
    • /
    • 2008
  • In this study, we analyzed the hydraulic characteristics of rivers by dam discharge change affecting in the river environment. To do this, survey variability of the Soyanggang dam discharge. We analyzed hydraulic characteristics of rivers by the discharge using HEC-RAS model(linear dimension) and RMA2 model(two-dimension) and show the results.

  • PDF

A comprehensive evaluation method study for dam safety

  • Jia, Fan;Yang, Meng;Liu, Bingrui;Wang, Jianlei;Gao, Jiaorong;Su, Huaizhi;Zhao, Erfeng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.639-646
    • /
    • 2017
  • According to the multi-index system of dam safety assessment and the standard of safety, a comprehensive evaluation model for dam safety based on a cloud model is established to determine the basic probability assignment of the Dempster-Shafer theory. The Dempster-Shafer theory is improved to solve the high conflict problems via fusion calculation. Compared with the traditional Dempster-Shafer theory, the application is more extensive and the result is more reasonable. The uncertainty model of dam safety multi-index comprehensive evaluation is applied according to the two theories above. The rationality and feasibility of the model are verified through application to the safety evaluation of a practical arch dam.

Hydraulic and structural considerations of dam's spillway - a case study of Karkheh Dam, Andimeshk, Iran

  • Faridmehr, Iman;Jokar, Mohammad Javadi;Yazdanipour, Mohammadreza;Kolahchi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • Preserving reservoir safety has recognized to be important for the public where a vast majority of dams are located upstream of greatly populated cities and industrialized areas. Buckling, floatation and cavitation have caused failure in the spillway gates and conveyance features during past catastrophic events; showed their vulnerability and need for regular inspection along with reviewing design calculations to ensure the spillway meet current design standards. This paper investigates the hydraulic and structural consideration of dam's spillway by evaluating the data of Karkheh Dam's. Discharge capacity, flood routings and cavitation damage risk were main features for hydraulic considerations where hydrostatic and hydrodynamic forces and stability conditions were considered in structural considerations.

A Study on Hydraulic Characteristics of the Curved Channel in the Downstream of Dam (댐 하류 만곡부 하천에 대한 수리학적 특성 연구)

  • Choi, Han-Kyu;Beak, Hyo-Seon;Lee, Kye-Yu
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.3-14
    • /
    • 2005
  • In order to accurately analyze the detailed hydraulic characteristics of the curved channel in the downstream of dam with the hydraulic structures such as bridge piers, RMA2 model which is one of two-dimensional models is applied to ChunCheon dam downstream curved channel. A series of hydraulic model tests are carried out for comparison studies. HEC-RAS model is also applied to the same site. There are no errors when velocities and water levels resulted from HEC-RAS model RMA2 model are compared with those of hydraulic model test on the straight channel. But, it is found that results of RMA2 model have a better agreement with those of hydraulic model test than those of HEC-RAS model on the curved channel with bridge piers. Additionally, RMA2 model can be predicted the eddy phenomena around bridge piers of the curved channel.

  • PDF

Effect of Hydraulic-Gun-Aerators on Cyanobacterial Bloom in a Dam Reservoir (댐저수지의 남조류 수화에 대한 간헐식 폭기장치의 효과)

  • Lee, Jeong-Ho
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • The purpose of this study is to assess the effects that hydraulic-gun-aerators have on cyanobactedial bloom in Sayeon Dam Reservoir in Ulsan City, Korea. A total of nine hydraulic-gun-aerators are in operation at the reservoir withe 100 m spacing between each aerator to control severe cyanobacterial bloom in the dam reservoir. The field studies were performed an total four times at two sampling stations in the reservoir from July to August in 2001. The standing crops of phytoplankton did not changed significantly by the operation. The cell concentration of the cyanobacteria at the surface layer were reduced about 10%, which is a poor result for the dispersing cyandobacteria deeper into the water. The average surface temperature during the study was reduced by 2.0$^{\circ}C$ by the hydraulic-gun-aerators. The effect of the operation on the vertical distribution of DO concentration was clear. However, the hydraulic-gun-aerators were not expected to have an effect in the lowest layer of the hypolimnion. In the study, it was proposed that installation distance between each hydraulic-gun-aerator would be proper when they are apart about 120 m based on DO depth profiles.

hydraulic-power generation of electricity plan of multi-Purpose dam in electric Power system (전력계통에서의 다목적댐 수력발전계획)

  • Kim, Seung-Hyo;Ko, Young-Hoan;Hwang, In-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1248-1252
    • /
    • 1999
  • To provide electricity power of good quality, it is essential to establish generation of electricity plan in electric power system based on accurate power-demand prediction and cope with changes of power-need fluctuating constantly. The role of hydraulic-power generation of electricity in electric power system is of importance because responding to electric power-demand counts or reservoir-type hydraulic-power generation of electricity which is designed for additional load in electric power system. So hydraulic-power generation of electricity must have fast start reserve. But the amount of water, resources of reservoir-type hydraulic-power generation of electricity is restricted and multi-used, so the scheduling of management by exact forecasting the amount of water is critical. That is why efficient hydraulic-power generation of electricity makes a main role on pumping up the utility of energy and water resource. This thesis introduced the example of optimal generation of electricity plan establishment which is used in managing reservoir-type hydraulic-power generation of electricity.

  • PDF

Review on Application of Wave Model for Calculation of Freeboard in Hydraulic Structure (수공구조물 여유고 산정을 위한 파랑모형의 적용성 검토)

  • Kim, Kyoung-Ho;Lee, Ho-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.25-30
    • /
    • 2007
  • Most of dams and reservoirs were made from natural materials, such as soil, sand and gravel. This type of hydraulic structure has the danger of collapse by overflow during a flood. Freeboard is the vertical distance between the crest of the dam and the full supply level in the reservoir. It must be sufficient to prevent overtopping from over flow. Thus, freeboard determination involves engineering judgment, statistical analysis, and consideration of the damage that would result from the overtopping of a hydraulic structure. This study attempts to calculate the wave height in dam, which is needed for the determination of the freeboard of the dam. Chung-ju dam is selected as the study area. Using the empirical formulas, the wave heights in dam were calculated, and the results were compared with those by the SWAN model, which is a typical wave model. The difference between the calculated results from the empirical formulas and those by the SWAN model is considerably large. This is because empirical equations consider only fetch or fetch and wind velocity, while the SWAN model considers depth and topography data as well.