• 제목/요약/키워드: Hydraulic Control System

검색결과 1,181건 처리시간 0.025초

Hydraulic Control System Using a Feedback Linearization Controller and Disturbance Observer - Sensitivity of System Parameters -

  • Kim, Tae-hyung;Lee, Ill-yeong;Jang, Ji-seong
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.59-65
    • /
    • 2019
  • Hydraulic systems have severe nonlinearity inherently compared to other systems like electric control systems. Hence, precise modeling and analysis of the hydraulic control systems are not easy. In this study, the control performance of a hydraulic control system with a feedback linearization compensator and a disturbance observer was analyzed through experiments and numerical simulations. This study mainly focuses on the quantitative investigation of sensitivity on system uncertainties in the hydraulic control system. First, the sensitivity on the system uncertainty of the hydraulic control system with a Feedback Linearization - State Feedback Controller (FL-SFC) was quantitatively analyzed. In addition, the efficacy of a disturbance observer coupled with the FL-SFC for the hydraulic control system was verified in terms of overcoming the control performances deterioration owing to system uncertainty.

Matlab을 이용한 유압모터-부하계의 위치제어 (Position Control of Hydraulic Motor-Load System using Matlab)

  • 이명호;박형배
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.76-83
    • /
    • 2004
  • The purpose of this paper is to find an effective control system for a hydraulic motor-load system using matlab. The Hydraulic control system consists of a hydraulic pump, a hydraulic proportional control valve, hydraulic pipelines, a hydraulic motor and a load system. The simulation models were verified by comparing the simulation results with measured data from the real hydraulic proportional position control system. In order to compensate the nonlinear friction characteristics in a hydraulic motor-load system, a discrete time PD controller and Friction torque observer has been applied.

농용(農用)트랙터의 전자유압식(電子油壓式) 경심(耕深) 제어(制御) 시스템 개발(開發) (Development of an Electronic-Hydraulic Tilling-Depth Control System for Agricultural Tractors)

  • 류관희;유수남;윤여두;사카이 준;김영상
    • Journal of Biosystems Engineering
    • /
    • 제16권4호
    • /
    • pp.355-362
    • /
    • 1991
  • The objective of this study was to develop an electronic-hydraulic depth control system. Simulation was carried out to investigate the responses of the control system, and indoor experiments were carried out to confirm the simulation results of the control system. Field experiments were carried out to compare the newly-developed electronic-hydraulic depth-control system with the existing mechanical-hydraulic position control system in terms of the performance of depth control. The electronic-hydraulic depth control system showed better performance than the existing mechanical-hydraulic hitch control system for the forward speeds of tractor less than 7 km/h. It is concluded that the new control system could be adapted to the existing tractors with slight modifications to the conventional mechanical-hydraulic hitch control systems.

  • PDF

트랙터의 전자유압식(電子油壓式) 히치 제어(制御) 시스템에 관한 연구(硏究)(II) -견인력제어(牽引力制御)- (Electronic-hydraulic Hitch Control System for Agricultural Tractor -Draft Control-)

  • 유수남;류관희;윤여두
    • Journal of Biosystems Engineering
    • /
    • 제14권4호
    • /
    • pp.229-241
    • /
    • 1989
  • The purposes of this study were to develop an electronic-hydraulic draft control system for tractor implements, to investigate the control performance of the system and the possibility of adaptation to the conventional tractor. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in draft control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. Moreover, the effects of filtering signals from draft sensor were also investigated. The following conclusions were derived from the study; 1. In draft control, there were hunting problems in controlling the implement without filtering the draft signals. Filtering was performed by a control program of electronic controller and the control performance and stability of the system were improved significantly. 2. For the draft control system operated on on-off control mode, draft was controlled within ${\pm}27-{\pm}55kg_f$ to the reference draft when the hydraulic flow rates were 5-15 l/min. For the draft control system operated on PWM control, draft was controlled within ${\pm}27kg_f$ to the reference draft regardless of hydraulic flow rates. 3. In the frequency responses of the draft control system, control performance on PWM control mode was not better than on on-off control mode because of characteristics of hydraulic valve and drafe sensor. As the hydraulic flow rates increased for the system operated on on-off control mode, the corner frequency of amplitude attenuation increased, but the corner frequency of phase-angle change remained nearly the same. But, the system was unstable beyond the frequency of 3.1 rad/s. 4. The electronic-hydraulic hitch control system developed in this study showed superior control performance, stability and convenience compared to conventional mechanical-hydraulic hitch control system. It is considered to be a superior replacement for the conventional mechanical-hydraulic hitch control system.

  • PDF

트랙터의 전자유압식(電子油壓式) 히치제어 시스템에 관한 연구(硏究)(I) -위치제어(位置制御)- (Electronic-Hydraulic Hitch Control System for Agricultural Tractor -Position Control-)

  • 유수남;류관희;박준걸
    • Journal of Biosystems Engineering
    • /
    • 제14권3호
    • /
    • pp.168-180
    • /
    • 1989
  • This study was attempted to develop the electronic-hydraulic hitch control system for position control of tractor plow and investigate the control performance of the system through experiments. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in position control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. The following conclusions were derived from the study; 1. For the position control system operated on on-off control mode, positions of implement were controlled within ${\pm}0.73^{\circ}{\sim}{\pm}1.46^{\circ}$ in rockshaft angle to the reference position when the hydraulic flow rates were 5~15 l/min. For the position control system operated on PWM control mode, positions of implement were controlled within ${\pm}0.73^{\circ}$ to the reference position regardless of hydraulic flow rates. It means that the implement could be positioned more accurately to the reference position on PWM control mode than on on-off control mode. 2. As results of the frequency responses of the position control systems, no clear difference in control performance between on-off control and PWM control modes was found. As the hydraulic flow rates increased, the corner frequencies of amplitude attenuation and phase-angle change increased. It means that the control performance of the system could be improved as the hydraulic flow rate increases.

  • PDF

터널 굴착기 유압시스템용 유량 제어 블록 개발 (Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine)

  • 이재동;임상진
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

퍼지 PID 제어 기법을 이용한 비선형 유압시스템의 제어 (Nonlinear Hydraulic System Control Using Fuzzy PID Control Technique)

  • 박장호;김종화;류기석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.69-69
    • /
    • 2000
  • Control systems using a hydraulic cylinder as an actuator are modeled to a nonlinear system owing to varying of moments and nonlinearities of hydraulic itself. In this paper, we want to control nonlinear hydraulic systems by adopting the fuzzy PID control technique which include nonlinear time varying control parameters. To do this, we propose the design method of fuzzy Pm controller and in order to assure effectiveness of fuzzy PID controller, computer simulations were executed for the control system.

  • PDF

NNGPC를 이용한 유압모터의 고정도 위치제어 (Accurate Position Control of Hydraulic Motor Using NNGPC)

  • 박동재;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.143-143
    • /
    • 2000
  • A neural net based generalized predictive control(NNGPC) is presented for a hydraulic servo position control system. The proposed scheme employs generalized predictive control, where the future output being generated from the output of artificial neural networks. The proposed NNGPC does not require an accurate mathematical model for the nonlinear hydraulic system and takes less calculation time than GPC algorithm if the teaming of neural network is done. Simulation studies have been conducted on the position control of a hydraulic motor to validate and illustrate the proposed method.

  • PDF

경사지 트랙터용 차체 수평제어 시스템 개발 - 유압시스템의 수평제어 성능 - (Development of Leveling Control System for a Slope Land Tractor - Performance of leveling control by hydraulic system -)

  • 이상식;오기석;이재용;황헌
    • Journal of Biosystems Engineering
    • /
    • 제27권3호
    • /
    • pp.203-210
    • /
    • 2002
  • In this study, the leveling control system for a tractor has been developed. The experimental model showed that the implementation of the proposed hydraulic control system fur the prototype design of a slope land tractor was feasible. The front axle was designed as a center pin type and the rear axle was designed as a trailing arm type. The leveling control of the body on the slope land was accomplished by controlling the height of the right and left trailing arms using the electronic controlled hydraulic cylinder. The maximum leveling control angles were ${\pm}$15$^{\circ}$ for roll angle and 7$^{\circ}$far pitch angle. The front and rear wheel drives were transmitted by gears from the main shaft to the final drive. The adaptability of the hydraulic control system was tested and investigated by analyzing the system response in time and frequency domain. The hydraulic control system on a step input showed a linearly increasing trend without any overshoot state. The hydraulic control system on a frequency input showed a little phase differences and gain drops within the range of 0.3Hz.

디스크 스피닝 성형기의 유압 및 제어시스템 설계 (Design of Hydraulic & Control System for the Disc Spinning Machine)

  • 강정식;박근석;강이석
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.157-165
    • /
    • 2002
  • The design of hydraulic & control system has been developed for the disc spinning machine. The hydraulic system has been designed in the overall system including the vertical & horizontal slide fur spinning works which are controlled by hydraulic servo valves in right & left side, and the clamping slide for holding & pressing blank material in center during spinning process. Based on the design concept of this hydraulic system, model test experiments for hydraulic servo control system is tested to conform confidence and applying possibility. The control system is introduced with the fuzzy-sliding mode controller for the hydraulic force control reacting force as a disturbance, because a fuzzy controller does not require an accurate mathematical model for the generation of nonlinear factors in the actual nonlinear plant with unknown disturbances and a sliding controller has the robustness & stability in mathematical control algorithm. We conform that the fuzzy-sliding mode controller has a good performance in force control for the plant with a strong disturbance. Also, we observe that a steady state error of the fuzzy-sliding mode controller can be reduced better than those of an another controllers.