• Title/Summary/Keyword: Hydration rate

Search Result 324, Processing Time 0.024 seconds

Effective Absorption Capacity of Highly Absorptive Materials using Isothermal Calorimetry, Considering the Effect of Specific Surface Area (등온열량계를 사용한 고흡수성 재료의 유효흡수율 측정: 비표면적의 영향)

  • Lee, Bo Yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.49-56
    • /
    • 2018
  • The use of highly absorptive materials in cement-based materials is increasing for internal curing purpose. However, calculation of correct absorption capacity of such materials is not easy, which leads to change in the effective water-to-cement ratio of cement paste by either absorbing or releasing water. In this study, effective absorption capacity of a highly absorptive material was found using isothermal calorimetry. Moreover, the effect of specific surface area was investigated. It was found that the method was capable of finding effective water absorption capacity of activated carbon fiber. For the activated carbon fiber used in this research, the effect of specific surface area was negligible because the high BET surface area was due to micropores less than 1nm, which does not affect the rate of hydration curve. Thus, the effective absorption capacity of such materials can be found successfully using this method.

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez;Bassam A., Tayeh;Raghda Osama Abd-Al, Ftah;Khaled, Abdelsamie
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.341-354
    • /
    • 2022
  • Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

Fundamental Properties of Low-Heat Concrete According to the Mixing Rate of Super Retarding Agent (초지연제 혼입률에 따른 저발열 콘크리트의 양생온도별 기초물성평가)

  • Park, Byoung-Joo;Choi, Yoon-Ho;Hyun, seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.90-91
    • /
    • 2020
  • As the construction site has become narrower recently, the importance of mass concrete is naturally being highlighted as skyscrapers become popular. However, it is not possible to install the entire volume per day if the mass concrete is installed due to the Remicon 8⦁5 system and the 52-hour workweek system. When the mass concrete base is divided into several days, cold joints occur because the consolidation of joints is not integrated due to different degree of hardening in the case of the previous layer and the next day. As a result, existing research has shown that if super retarding agent are mixed into Ready Mixed Concrete (hereinafter referred to as Remicon) using sugar as a raw material to delay the curing time of concrete, cold joints are inhibited and cracks are inhibited by reducing the initial hydration heat.

  • PDF

A comparative study on the mechanical properties of ultra early strength steel fiber concrete

  • Yi-Chun Lai;Ming-Hui Lee;Yuh-Shiou Tai
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.255-267
    • /
    • 2023
  • The production of ultra-early-strength concrete (UESC) traditionally involves complexity or necessitates high-temperature curing conditions. However, this study aimed to achieve ultra-early-strength performance solely through room-temperature curing. Experimental results demonstrate that under room-temperature (28℃) curing conditions, the concrete attained compressive strengths of 20 MPa at 4 hours and 69.6 MPa at 24 hours. Additionally, it exhibited a flexural strength of 7.5 MPa after 24 hours. In contrast, conventional concrete typically reaches around 20.6 MPa (3,000 psi) after approximately 28 days, highlighting the rapid strength development of the UESC. This swift attainment of compressive strength represents a significant advancement for engineering purposes. Small amounts of steel fibers (0.5% and 1% by volume, respectively) were added to address potential concrete cracking due to early hydration heat and enhance mechanical properties. This allowed observation of the effects of different volume contents on ultra-early-strength fiber-reinforced concrete (UESFRC). Furthermore, the compressive strength of 0.5% and 1% UESFRC increased by 16.3% and 31.3%, respectively, while the flexural strength increased by 37.1% and 47.9%. Moreover, toughness increased by 58.2 and 69.7 times, respectively. These findings offer an effective solution for future emergency applications in public works.

Endoscopic retrograde cholangiopancreatography-related complications: risk stratification, prevention, and management

  • Clement Chun Ho Wu;Samuel Jun Ming Lim;Christopher Jen Lock Khor
    • Clinical Endoscopy
    • /
    • v.56 no.4
    • /
    • pp.433-445
    • /
    • 2023
  • Endoscopic retrograde cholangiopancreatography (ERCP) plays a crucial role in the management of pancreaticobiliary disorders. Although the ERCP technique has been refined over the past five decades, it remains one of the endoscopic procedures with the highest rate of complications. Risk factors for ERCP-related complications are broadly classified into patient-, procedure-, and operator-related risk factors. Although non-modifiable, patient-related risk factors allow for the closer monitoring and instatement of preventive measures. Post-ERCP pancreatitis is the most common complication of ERCP. Risk reduction strategies include intravenous hydration, rectal nonsteroidal anti-inflammatory drugs, and pancreatic stent placement in selected patients. Perforation is associated with significant morbidity and mortality, and prompt recognition and treatment of ERCP-related perforations are key to ensuring good clinical outcomes. Endoscopy plays an expanding role in the treatment of perforations. Specific management strategies depend on the location of the perforation and the patient's clinical status. The risk of post-ERCP bleeding can be attenuated by preprocedural optimization and adoption of intra-procedural techniques. Endoscopic measures are the mainstay of management for post-ERCP bleeding. Escalation to angioembolization or surgery may be required for refractory bleeding. Post-ERCP cholangitis can be reduced with antibiotic prophylaxis in high risk patients. Bile culture-directed therapy plays an important role in antimicrobial treatment.

A Study on the Properties of Recycled Concrete Using Recycled Fine Aggregates with different Removal formulas of Powder In Aggregate (미분 제거방식이 다른 2종의 재생 잔골재가 콘크리트외 특성에 미치는 영향)

  • Lee Mun-Hwan;Lee Sea-Hyun;Shim Jong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.95-104
    • /
    • 2005
  • The research conducted to study the potential practicability of recycled aggregate concrete by analyzing the characteristics of concretes made of recycled quality aggregates produced by wet and dry process has found the following results. The air content of recycled aggregate concrete increased with increase of the substitut on rate due to mortar included while producing recycled aggregates. However, the concretes with aggregate produced by dry process had relatively low rate of increase in air content. The slump showed generally decreasing trend as the substitution rate of recycled aggregate increased regardless of the wet or dry process. It was assumed that the mortar particles remained in recycled aggregate absorbed the surplus hydration in concrete and decreased fluidity The compressive strength generally decreased as the substitution rate of recycled aggregate increased, however there was an increasing trend as well due to decreasing effect of water-cement ratio when the substitution rate of recycled aggregate reached 25, 50% after mix. This phenomena also appeared in early age, which meant that recycled aggregate concrete should not be retarded in setting when applied in the field. The tensile strength also reached the maximum when wet or dry recycled aggregate replaced with 25%. To conclude, recycled aggregates for concrete produced by wet or dry process are expected to demonstrate essential characteristics of concrete without significant decline in physical or dynamic quality when the substitution rate is below 25% although there are variations subject to water-cement ratio. However, slight differences are expected due to types of recycled aggregate and physical quality.

Status of Nosocomial Urinary Tract Infections in the ICU: Molecular Epidemiology of Imipenem Resistant P. aeruginosa (중환자실내 병원성 요로감염 실태와 전파경로: Imipenem Resistant P. aeruginosa[IRPA]의 분자역학적 특성을 중심으로)

  • Yu, Seong-Mi;Jeon, Seong-Sook;Kang, In-Soon;An, Hye-Gyung
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.7
    • /
    • pp.1204-1214
    • /
    • 2006
  • Purpose: This retrospective study was done to evaluate the status of nosocomial urinary tract infections and to determine the risk factors and transmission route of causal IRPA through molecular epidemiology. Method: Two hundred ninety-nine of 423 patients admitted to the internal medicine and surgery ICU at a university hospital incity B had a positiveurine culture. Twelve of the 299 patients who had a urinary tract infection had IRPA strains. The data was collected from November 1, 2004 to January 31, 2005. The following results were obtained after the data was analyzed using percentile and UPGMA. Result: The rate of nosocomial urinary tract infections in the ICU was 10.8%. Therewere 16.8 cases of infection based on the period of hospitalization. There were 16.9 cases of infection based on the use of a foley catheter. The rate of nosocomial urinary tract infection in the ICU and urinary tract infections related to IRPA were higher in patients with the following characteristics: men, old age, admission through the emergency room, longer than seven days admission, severity of admitting causes, disturbance of consciousness, hydration less than 300cc in 24hours, a long course of antibiotics, a long period of foley catheterization and perineal care. Most of the microorganisms that caused the urinary tract infection were gram negative bacilli, among which P. aeruginosa was found in 70 patients (18.5%) and IRPA in 12 (4.0%). Among the 12 IRPA strains that were tested with PFGE, eight showed a dice coefficient higher than 80%, suggesting a genetic relationship. They were related with the period of hospitalization in the same ICU. These patients all received direct care for a urinary tract infection. Conclusion: Through these results, IRPA can be consideredas a contributing factors to urinary tract infections thus, active preventative measures are needed by the medical staff.

Effects of Atrial Natriuretic Peptide on Renal and Hormonal Balances in terms of Aging in Rabbits (연령증가에 따른 Atrial Natriuretic Peptide의 신장과 호르몬 효과)

  • Kim, Jong-Duk;Kim, Suhn-Hee;Kim, Jung-Soo;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.51-66
    • /
    • 1989
  • Mammalian cardiocytes secrete atrial natriuretic peptides (ANPs) into plasma, which cause marked natriuresis, diuresis, vasorelaxation and inhibition of hormone secretions. Aging influences the ability of the kidney both to conserve and to excrete sodium; i.e., in old animals, the excretory capacity of sodium is reduced and the time required to excrete sodium load is prolonged. Therefore, it is possible that animals differing in ages may respond differently to ANP. In the present study, we determined whether the renal, hormonal and vascular effects of ANP may be influenced by aging in conscious rabbits. The plasma renin concentration decreased with aging but plasma ANP concentration was significantly lower only in 24-month-old rabbits. Plasma aldosterone concentration and atrial ANP content did not change by aging. In 1-month-old rabbits, ANP (atriopeptin III, 3 ug/kg) administered intravenously caused hypotension and decreased in plasma renin and aldosterone concentrations, but did not cause diuresis and natriuresis. In 2 to 5 month-old rabbits, ANP caused hypotension, decreases in Plasma renin and aldosterone concentrations and marked renal effects. However, in 24-month-old rabbits, all the above effects of ANP was blunted. With hydration of physiological saline at a rate of 15 ml/kg/h for 2hr, urine volume and glomerular filtration rate did not change but the electrolyte excretion as well as fractional excretion of sodium significantly increased. The plasma concentrations of active renin and aldosterone were decreased but plasma inactive renin and ANP concentrations were increased. The changes in renal function and plasma level of hormone showed no differences in different ages. These results suggest that the peripheral vascular receptors to ANP may develop earlier than those in the kidney, and the attenuated vascular and renal responses to ANP in the old age may be due to age-related modifications in renal function and blood vessel.

  • PDF

Prediction of Carbonation Progress for Concrete Structures Considering Change of Atmospheric Environment (대기환경변화를 고려한 콘크리트 구조물의 중성화 예측)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.574-584
    • /
    • 2003
  • The most common deterioration cause of concrete structures in urban environment is carbonation. Recently, the $CO_2$ concentration and temperature at atmosphere is sharply increased with time due to global warming phenomena. In this study, the climate scenario IS92a, which was suggested by the IPCC, is used to consider temperature and atmospheric $CO_2$ concentration change in the model of service life prediction. The modified mathematical solution, which was based on the Fick's 1st law of diffusion, was used to reflect concrete materials properties such as the degree of hydration of concrete with elapsed time, and important parameters, which associated with deterioration rate. The techniques of service life prediction are developed introducing the method of reliability and stochastic concept to consider microclimatic condition in Seoul, South Korea. From the result of service life prediction, concrete containing high W/C ratio is shown fast carbonation rate due to $CO_2$ concentration increase. It is concluded that the deterioration of concrete structures due to carbonation is insignificant problem on the conditions that below W/C 55%, well curing concrete.

Kinetics and Mechanism of the Hydrolysis of Enol Ester in Strong Acidic Solution (강산성용액에서 엔올에스테르의 가수분해에 대한 반응속도론적 연구)

  • Heo, Tae Seong;Yu, Gyeong Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.5
    • /
    • pp.391-396
    • /
    • 1994
  • The hydrolysis of $\alpha-benzoxystyrene(1)$ in strong acidic solution has been investigated kinetically. In perchloric acid concentration lower than 5.5 M($H_o$ < -3.0), hydration paramer $\omega$ = + 7.6, and $\Phi$ = + 0.54 were obtained. The solvent isotope effect $k_{H_2O}/K_{D_2O}$ is 0.72. The substituent effect was found to conform to the Hammett $\sigma^+$ constant with $\rho$ = -0.60. On the basis of these results and other evidence, the hydrolysis of the enol ester proceeds by $A_{AL}$2 type mechanism. In concentration greater than 5.5 M($H_o$ > -3.0), isotope effect, $k_{H_2O}/_{D_2O}$ is 3.32, substituent effect, $\rho$ is -1.60 and the rate is linear with the acidity function, $H_o$. Thus, the mechanism changes one involving initial, and rate-determining olefin protonation.

  • PDF