• Title/Summary/Keyword: Hydration rate

Search Result 323, Processing Time 0.018 seconds

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

Mathematical Modelling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 오병환;차수원;신경준;하재담;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.883-887
    • /
    • 1998
  • Hydration is the main reason for the growth of the material properties. A exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development all material properties should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The latter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration.

  • PDF

Hydration Rate of Milled Rice (백미의 수분 흡수 속도)

  • Kim, Sung-Kon;Han, Ki-Young;Park, Hong-Hyun;Chae, Je-Cheon;Ree, Jung-Haeng
    • Applied Biological Chemistry
    • /
    • v.28 no.2
    • /
    • pp.62-67
    • /
    • 1985
  • Hydration rate of 35 Japonica and 24 J x Indica rice varieties at $23^{\circ}C$ was investigated and an attempt was made for a tentative classification of milled rice into six groups based on hydration rate. Each rice variety had characteristic value for hydration rate. In general, J x Indica rice hydrated at a faster rate than Japonica rice. Hydration rate was negatively correlated with the ratio of length to width of rice grain. No correlation was found between hydration rate and protein, amylose, surface area, volume or initial water grain.

  • PDF

Effect of Gypsum on the Characteristics of Early Hydration of the System C3S-C3A (I) (C3S-C3A계의 초기 수화반응 특성에 미치는 석고의 영향 (I))

  • 신규연;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.514-520
    • /
    • 1989
  • The early hydration characteristics according to the C3S/C3A ratio and presence of gypsum, in order to establish the hydration mechanism of the system C3S-C3A, have been studied. The rate of C3S dissolution in the system C3S-Gypsum was higher than that in the system C3S. Consequently, the induction period was reduced and the rate of Ca(OH)2 formation in the accleration period was increased. The hydration of C3S in the system C3S-C3A was retarded because Al3+ in the liquid phase originating from the hydration of C3A was incorporated into calcium hydrosilicates formed. The retardation phenomenon of C3S hydration was not appeared in the system C3S-C3A-gypsum because the reaction of monosulfate formation became the rate-determining step.

  • PDF

Effect of Freezing on Hydration Rate and Sprouting Characteristics of Soybeans (대두의 수화속도와 콩나물의 발아특성에 대한 동결처리 효과)

  • Rhim, Jong-Whan;Oh, Bong-Yun;Kim, Dong-Han;Ham, Kyung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.660-665
    • /
    • 2003
  • Effect of freezing on the hydration rate and growth characteristics of bean sprout of two domestic cultivars of soybean, Eunha beans and Taegwang beans, was investigated. Freezing of the soybeans at $-80^{\circ}C$ affected characteristics of the hydration and growth of soybean sprout of the beans. Hydration rate of the frozen beans depended on the hydration temperature. It decreased up to 50% at lower than $60^{\circ}C$ of hydration temperature, but it did not decrease at higher than $60^{\circ}C$. Activation energies of frozen Eunha and Taegwang beans were 39.79 and 39.25 kJ/mol, respectively. Kinetic compensation effect between activation energy values and the pre-exponential factor for the hydration of soybeans with or without freezing was observed. Germination rate and thickness of the bean sprout increased by freezing, however, yield and weight were not affected by freezing.

Effect of Gypsum of the Early Hydration Characteristics of the System $C_3S$-$C_3A$(II) ($C_3S$-$C_3A$계의 초기수화 반응 특성에 미치는 석고의 영향(II))

  • 신규연;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.560-566
    • /
    • 1990
  • The early hydration characteristics according to the C3A polymorphism and the presence of gypsum, in order to establish the hydration mechanism of the system C3S-C3A, have been studied. The hydration rate of C3A was changed according to the its crystal structure and influenced the hydration of C3S. That is, the hydration rate of C3S was accelerated in case of orthorhombic-C3A, but that was slightly retarded in case of melt-C3A than that of cubic-C3A. In the system C3S-C3A-gypsum, the retardation phenomenon of the reaction of monosulfate formation was observed in case of both orthorhombic and melt-C3A.

  • PDF

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

Effect of Cement Particle Size on Properties of Ordinary Portland Cement (보통 포틀랜드 시멘트 물성에 미치는 시멘트 입도의 영향)

  • Byun, Seung-Ho;Kim, Hyeong-Cheol;Kim, Jae-Young;Choi, Hyun-Kuk;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • This study examined the effects of particle size on characteristics of cement by controlling the particle size of commercial cement. Through a size adjustment, the cement has increasing more of particles that are less than $10{\mu}m$ in size so the initial reaction time has been shortened as a result of improvement in the early hydration reaction. Additionally, it showed a great characteristics of strength from the early age and the initial hydration heat has been increased as well. In the upper and middle parts cements, the initial hydration reaction rate contribution is high with the $10{\mu}m$ compared to original cement. So the initial hydration reaction rate is improved and as a result, it also showed relatively high hydration heat as well. Additionally, adiabatic temperature also showed an increase rate in the results.

Generation of Hydration Heat of the Concrete Combined Coarse Particle Cement and Blast Furnace Slag (조분 시멘트와 고로슬래그를 조합 사용한 콘크리트의 수화발열 특성)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Jang, Duk-Bae;Kim, Young-Pil;Cha, Wan-Ho;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • This study, having combined and displaced blast furnace slag("BS" hereinafter) known as admixture material that delays hydration reaction with coarse particle cement("CC" hereinafter) collected in particle classification method during ordinary portland cement("OPC" hereinafter), reviewed the hydration heat characteristics affecting the concrete. To reduce hydration heat, the study plain-mixed which used 100% OPC for W/B 50% level 1, displaced CC at level 3 of 25%, 50% and 75% for OPC, and by displacing BS with admixture material at level 5 of 0%, 20%, 40%, 60% and 80% for cement(OPC+CC), experimented totally 16 batches. As a result of experiment, in the case of flow, the more CC displacement rate increased, the more it tended to decrease, and the more BS displacement rate increased, the more it decreased. Also, as for simple adiabatic temperature rise by the CC and BS displacement rates, it decreased as displacement rate increased, and particularly in the case of displaced BS of 80%, It showed temperature reduction effect of about 63% companing with plain. Compressive strength decreased in proportion to displacement rate, however strength reduction increment was shown to decrease with age progress.

  • PDF

Microscopic Characterization of Cement Composites with Carbon Nanotubes (탄소나노튜브가 첨가된 시멘트복합체의 미시적특성분석)

  • Kim, Young-Min;Lee, Gun Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.176-177
    • /
    • 2019
  • As a result of the Rietveld analysis to determine the effect of carbon nanotubes on the hydration products of cement composites, the quantitative difference of hydration products according to the addition rate of carbon nanotubes was not significant. Ettringite, an early hydration product, was measured to be slightly higher than the planes with carbon nanotubes over all ages. Therefore, it seems that carbon nanotubes have no effect on the hydration production in cement paste.

  • PDF