• Title/Summary/Keyword: Hydration model

Search Result 208, Processing Time 0.023 seconds

An Integrated System to Predict Early-Age Properties and Durability Performance of Concrete Structures

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.465-466
    • /
    • 2010
  • In this paper, an integrated system is proposed which can evaluate both the early-age properties and durability performance of concrete structures. This integrated system starts with a hydration model which considers both Portland cement hydration and chemical reactions of supplementary cementing materials (SCM). Based on the degree of hydration of cement and mineral admixtures, the amount of reaction products, the early age heat evolution, chemically bound water, porosity, the early age short-term mechanical behaviors, shrinkage and early-age creep are evaluated as a function of curing age and curing conditions. Furthermore, the durability aspect, such as carbonation of blended concrete and chloride attack, are evaluated considering both the material properties and surrounding environments. The prediction results are verified through experimental results.

  • PDF

Theoretical Study of the Effects of Cation on $_t$RNA

  • Koh, Kwang-Oh;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.2
    • /
    • pp.66-71
    • /
    • 1981
  • The effects of cation on tRNA have been theoretically investigated using the semiempirical potential energy functions. The binding of $Mg^{2+}$ to the model compound and the hydration scheme of the anticodon loop have been determined, and their stabilization energies produced by the introduction of magnesium pentahydrate and water molecules in the first hydration shell were calculated. The results indicate that magnesium pentahydrate is important for decreasing the flexibility of the anticodon loop and satisfying the large Y37 stereochemically during the protein synthesis. The effects of $Mg^{2+}$ on the hydration scheme were also investigated.

Conformation of Antifungal Agent Fluconazole

  • Han, Seong Jun;Kang Kee Long;Lee Sung Hee;Chung Uoo Tae;Kang Young Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.262-265
    • /
    • 1993
  • Conformational free energy calculations using an empirical potential function and a hydration shell model (program CONBIO) were carried out on antifungal agent fluconazole in the unhydrated and hydrated states. The initial geometry of fluconazole was obtained from two minimized fragments of it using a molecular mechanics MMPMI and followed by minimizing with a semiempirical AM1 method. In both states, the feasible conformations were obtained from the calculations of conformational energy, conformational entropy, and hydration free energy by varying all the torsion angles of the molecule. The intramolecular hydrogen bonds of isopropyl hydroxyl hydrogen and triazole nitrogens and the structural flexibility are of significant importance in stabilizing the conformations of fluconazole in both states. Hydration is proved to be one of the essential factors in stabilizing the overall conformation in aqueous solution. Two F atoms of phenyl ring are not identified as an essential key in determining the stable conformations and may be responsible for the interaction with the receptor of fluconazole.

Numerical investigation on tortuosity of transport paths in cement-based materials

  • Zuo, Xiao-Bao;Sun, Wei;Liu, Zhi-Yong;Tang, Yu-Juan
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.309-323
    • /
    • 2014
  • Based on the compositions and structures of cement-based materials, the geometrical models of the tortuosity of transport paths in hardened cement pastes, mortar and concrete, which are associated with the capillary porosity, cement hydration degree, mixture particle shape, aggregate volume fraction and water-cement ratio, are established by using a geometric approach. Numerical simulations are carried out to investigate the effects of material parameters such as water-cement ratio, volume fraction of the mixtures, shape and size of aggregates and cement hydration degree, on the tortuosity of transport paths in hardened cement pastes, mortar and concrete. Results indicate that the transport tortuosity in cement-based materials decreases with the increasing of water-cement ratio, and increases with the cement hydration degree, the volume fraction of cement and aggregate, the shape factor and diameter of aggregates, and the material parameters related to cement pastes, such as the water-cement ratio, cement hydration degree and cement volume fraction, are the primary factors that influence the transport tortuosity of cement-based materials.

Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Cho, Myung-Sug
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.47-60
    • /
    • 2016
  • The objective of this study was to evaluate the capability of different strength-maturity models to account for the effect of the hydration heat on the in-place strength development of high-strength concrete specifically developed for nuclear facility structures under various ambient curing temperatures. To simulate the primary containment-vessel of a nuclear reactor, three 1200-mm-thick wall specimens were prepared and stored under isothermal conditions of approximately $5^{\circ}C$ (cold temperature), $20^{\circ}C$ (reference temperature), and $35^{\circ}C$ (hot temperature). The in situ compressive strengths of the mock-up walls were measured using cores drilled from the walls and compared with strengths estimated from various strength-maturity models considering the internal temperature rise owing to the hydration heat. The test results showed the initial apparent activation energies at the hardening phase were approximately 2 times higher than the apparent activation energies until the final setting. The differences between core strengths and field-cured cylinder strengths became more notable at early ages and with the decrease in the ambient curing temperature. The strength-maturity model proposed by Yang provides better reliability in estimating in situ strength of concrete than that of Kim et al. and Pinto and Schindler.

Conformation of Antiimflammatory Fenamates (소염진통성 페나메이트 유도체들의 형태분석)

  • Chung, Uoo-Tae;Kang, Kee-Long;Lee, Sung-Hee
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.632-639
    • /
    • 1996
  • Most stable conformers of some antiinflammatory fenamates were obtained by conformational free energy change calculations. Conformational energies for the molecules as unhydrate d state were estimated first, and those as hydrated state were calculated then to simulate the molecules in aqueous solution using a hydration shell model. The initial geometries of the molecules were obtained either from X-ray crystallographic data or from homologous molecular fragments. The bond lengths and angles were not varied, but all the torsion angles were varied step by step during the conformational free energy surface searching. The results show that there are several feasible conformations for a compound. And the molecules are somewhat stabilized by hydration (-${\delta}G_{hyd}{\cong}$13 to 16kcal/mole), but the conformations were not changed significantly by the hydration itself. There seems to be a strong tendency of intramolecular hydrogen bonding between imino hydrogen and carboxyl oxygen of the compounds. As a result, the carboxyl group cannot be rotated freely, and the rotation of the second aromatic ring is the main reason for the conformational variations of the compounds. The ECEPP force fields via the program CONBIO were used throughout this study.

  • PDF

Hydration and pH of the Stratum Corneum in High-risk Newborns in the First 2 Weeks of Life

  • Ahn, Young Mee;Sohn, Min;Lee, Sangmi
    • Child Health Nursing Research
    • /
    • v.24 no.3
    • /
    • pp.345-352
    • /
    • 2018
  • Purpose: The study was conducted to measure stratum corneum hydration (SCH) and pH (SCP) in high-risk newborns in the early postnatal period and to explore the features related to patterns of change in those parameters. Methods: SCH and SCP were measured on the dorsal hand in 99 hospitalized newborns during the first 14 days of life and the results were analyzed using a general linear model. Results: The mean hydration was 42.9% on day 1, which decreased to 34.6% by 2 weeks (F=15.61, p=<.001). An association was observed between SCH and prematurity (F=21.12, p<.001), as well as for their interaction (F=8.11, p<.001). The mean SCP was $6.2{\pm}0.3$ on day 1, and decreased to $5.7{\pm}0.2$ (F=95.75, p<.001), with no association with prematurity. After adjusting for birth weight, SCH was higher in newborns with vaginal delivery (F=9.07, p=.023) and who received phototherapy (F=11.81, p=.011). For SCP, only delivery type had a significant influence (F=6.40, p=.044). Conclusion: This study suggests that SCH is typically in the 30% range during the early postnatal period, and that an acid mantle on the SC surface is very unlikely to form; these findings could be applied to the nursing process for promoting skin integrity in high-risk neonates.

Conformation of L-Ascorbic Acid in solution. 1. Neutral L-Ascorbic Acid

  • Shin, Young A.;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 1991
  • Conformational free energy calculations using an empirical potential function and the hydration shell model (a program CONBIO) were carried out on the neutral L-ascorbic acid (AA) in the unhydrated and hydrated states. The conformational energy was minimized from starting conformations which included possible conformations of six torsion angles in the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. From the analysis of conformational free energies for AA in both states, intramolecular hydrogen bonds (HBs) are proved to be an essential factor in stabilizing the overall conformations, and cause the conformations in both states to be quite different from those in crystal. In the case of hydrated AA, there is a competition between HBs and hydration, and the hydration around the two hydroxyl groups attached to the acyclic side chain forces the molecule to form less stable HBs. The hydration affects strongly the conformational energy surfaces of AA. Several feasible conformations obtained in this work indicate that there exists an ensemble of several conformations in aqueous solution. The calculated probable conformations for the rotation about the C5-C6 bond of the acyclic side chain are trans and gauche +, which are in good agreement with results of NMR experiment.

Conformation of L-Ascorbic Acid in Solution 2. L-Ascorbic Acid Anion

  • Mi Suk Kim;Sung Hee Lee;Uoo Tae Chung;Young Kee Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.143-148
    • /
    • 1991
  • In the unhydrated and hydrated states, conformational free energies of L-ascorbic acid anion (AAA) were computed with an empirical potential function and the hydration shell model (a program CONBIO). The conformational energy was minimized from possible starting conformations expressed with five torsion angles of the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. As found in L-ascorbic acid (AA), intramolecular hydrogen bonds (HBs) are proved to be of significant importance in stabilizing the overall conformations of AAA in both states, and give the folded conformations, which are quite different from those in crystal. There are competitions between HBs and hydration around O3 atom of the lactone ring and hydroxyls of the acyclic side chain. Especially, the whole conformation of AAA is strongly dependent on the water-accessibility of O3 atom. Though there is a significant effect of the hydration on conformational surface, the lowest energy conformation of the unhydrated AAA is conserved. The different patterns of HBs and hydration result in the conformations of AAA in both states being different from those of AA. It can be drawn by several feasible conformations obtained in the hydrated state that there exists an ensemble of several conformations in aqueous solution.

Strength Estimation Model of Early-Age Concrete Considering Degree of Hydration and Porosity (수화도와 공극률을 고려한 초기재령 콘크리트의 강도 예측 모델)

  • 황수덕;이광명;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.137-147
    • /
    • 2002
  • Maturity models involving curing temperature and curing ages have been widely used to predict concrete strength, which can accurately estimate concrete strength. However, they may not consider physical quantities such as the characteristics of hydrates and the capillary porosity of microstructures associated with strength development. In order to find out the effects of both factors on a strength increment, the hydration model and the estimation method of the amount of capillary porosity were established, and the compressive strength test of concrete nth various water/cement ratios was carried out considering two test parameters, curing temperature and curing age. In this study, by analyzing the experimental results, a strength estimation model for early-age concrete that can consider the microstructural characteristics such as hydrates and capillary porosity was proposed. Measured compressive strengths were compared with estimated strengths and good agreements were obtained. Consequently, the proposed strength model can estimate compressive strength of concrete with curing age and curing temperature within an acceptable error.