• Title/Summary/Keyword: Hydration model

Search Result 208, Processing Time 0.025 seconds

A study of Experimental on Construction of Concrete Filled in Steel Tube Column under a Low Temperature (저온하에서의 CFT 시공을 위한 실험적 연구)

  • 강용학;이민경;정근호;백민수;김진호;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.489-494
    • /
    • 2002
  • The basic Physical properties, Slump, Slump Flow, Air content, Bleeding, and Settlement of concrete was investigated to test Characteristic of Setting and to evaluate the relation between Model Specimen and Heat of Hydration for construction under Low Temperature (CFT). The objective of this study is to take the partial core after the cementation of Model Specimen, test the compression intensity and analyze the relation to Test Piece.

  • PDF

An Experimental Study on the Construction of CFT Column Over the High Temperature (CFT 기둥의 서중 시공 적용을 위한 기초적 연구)

  • 이장환;강용학;공민호;정근호;김진호;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1029-1034
    • /
    • 2003
  • The basic Physical properties, Slump, Slump Flow, Air content, Bleeding, and Settlement of concrete was investigateed to test Characteristic of Setting and to evaluate the relation between Model Specimen and Heat of hydration for construction Over the High Temperature (CFT). The objective of this study is to take the partial core after the cementation of Model Specimen, test the compression intensity and analyze the relation to Test Piece.

  • PDF

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.

Analysis on the Cracking Behavior for Massive Concrete with Age-Dependent Microplane Model (재령효과를 고려한 미소면 모델을 적용한 매스콘크리트의 균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Lee, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Concrete structure that has been constructed in real field is on multi-axial stress state condition. After placing of concrete, hydration heat and shrinkage of concrete can cause various stress conditions with respect to the restraint level and condition. So, to predict the early age behavior of concrete structure, multi-axial material model is required and microplane model is acceptable. Recently, many studies have been performed on the microplane model, but the model developed up to now has been related to hardened concrete that material property is constant with concrete age. So, it is inappropriate to apply this model immediately to analyze the early age behavior of concrete. In this study, microplane model that can predict early age behavior of concrete was developed and cracking analysis using that was performed to describe cracking behavior for massive concrete sturucture.

  • PDF

A Numerical Model for Plastic Shrinkage Cracking of Concrete Slab (콘크리트 슬래브의 소성수축균열 해석모델)

  • Kwak Hyo-Gyoung;Ha Soo-Jun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.448-455
    • /
    • 2005
  • In this paper, an analytical model for estimation of the time at which the concrete surface begins to dry is introduced to predict whether or not plastic shrinkage cracks occur. First of all, the validity of a consolidation model for bleeding of cement paste proposed by Tan et al. is verified by comparing the analytical results with the experimental results, and used to evaluate the rate and amount of bleed water of concrete. Also an analytical model for evaporation of bleed water which considers the effect of the temperature variation of concrete surface due to hydration heat on the evaporation rate is proposed, and the experimental and analytical results are then compared to verify the validity of the introduced model. In advance, the time at which the concrete surface begins to dry is estimated using above two analytical models, and compared with the experimental results about the time at which plastic shrinkage cracks occur. From the comparison, it is verified that the proposed model can predict the occurrence of plastic shrinkage cracking with comparative precision.

  • PDF

Analysis of Early-age Concrete Behavior considering Stress Relaxation (응력이완을 고려한 초기재령 콘크리트의 거동해석)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.641-646
    • /
    • 2001
  • In early-age concrete, volumetric deformations due to thermal expansion and moisture transfer are restrained by various boundary conditions, and then restraint stresses occur in proportion to developed stiffness. With increase of the age, these stresses are gradually relieved by significant relaxation behavior of early-age concrete. Therefore, it is necessary to consider the stress relaxation in order to analyze the behavior of early-age concrete more accurately. In this paper, we propose a unified algorithm which combines a relaxation model with hydration model, heat conduction model, micropore structure formation model, moisture diffusion model and mechanical properties development model and develop a finite element program based on the algorithm. The program is applied to evaluate stress development if a temperature-stress test machine (TSTM) specimen and a massive concrete structure, and then validity of the program is discussed and evaluated.

  • PDF

Chloride-Penetration Analysis in Cracked Early-Age Concrete (균열을 갖는 초기재령 콘크리트의 염화물 침투 해석)

  • 송하원;박상순;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.635-640
    • /
    • 2001
  • In this study, a mathematical model is established for prediction of chloride penetration in unsaturated cracked early-age concrete. The model is combined with models for thermo-hygro dynamic coupling of cement hydration, moisture transport and micro-structure development. Chloride permeability and water permeability at cracked early-age concrete specimens are evaluated using a rapid chloride permeability test and a low-pressure water permeability test, respectively. Then, a homogenization technique is introduced into the model to determine equivalent diffusion coefficient and equivalent Permeation coefficient. Increased chloride transport due to cracks at the specimen could be predicted fairly well by characterizing the cracks using proposed model. Proposed model is verified by comparing diffusion analysis results with test results.

  • PDF

Optimization of PEM Fuel Cell System Using a RSM (반응표면기법에 의한 고분자전해질형 연료전지 시스템의 최적화)

  • Xuan, Dongji;Kim, Jin-Wan;Nan, Yanghai;Ning, Qian;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3140-3141
    • /
    • 2008
  • The output power efficiency of the fuel cell system depends on the demanded current, stack temperature, air excess ratio, hydrogen excess ratio and inlet air humidity. Thus, it is necessary to determine the optimal operation condition for maximum power efficiency. In this paper, we developed a dynamic model of fuel cell system which contains mass flow model, diffusivity gas layer model, membrane hydration and electrochemistry model. In order to determine the maximum output power and minimum use of hydrogen in a certain power condition, response surface methodology (RSM) optimization based on the proposed PEMFC stack model is presented. The results provide an effective method to optimize the operation condition under varied situations.

  • PDF

Early-age thermal analysis and strain monitoring of massive concrete structures

  • Geng, Yan;Li, Xiongyan;Xue, Suduo;Li, Jinguang;Song, Yanjie
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.279-289
    • /
    • 2018
  • Hydration heat and thermal induced cracking have always been a fatal problem for massive concrete structures. In order to study a massive reinforced concrete wall of a storage tank for liquefied natural gas (LNG) during its construction, two mock-ups of $0.8m{\times}0.8m{\times}0.8m$ without and with metal corrugated pipes were designed based on the actual wall construction plan. Temperature distribution and strain development of both mock-ups were measured and compared inside and on the surface of them. Meanwhile, time-dependent thermal and mechanical properties of the concrete were tested standardly and introduced into the finite-element (FE) software with a proposed hydration degree model. According to the comparison results, the FE simulation of temperature field agreed well with the measured data. Besides, the maximum temperature rise was slightly higher and the shrinkage was generally larger in the mock-up without pipes, indicating that corrugated pipes could reduce concrete temperature and decrease shrinkage of surrounding concrete. In addition, the cooling rate decreased approximately linearly with the reduction of heat transfer coefficient h, implying that a target cooling curve can be achieved by calculating a desired coefficient h. Moreover, the maximum cooling rate did not necessarily decrease with the extension of demoulding time. It is better to remove the formwork at least after 116 hours after concrete casting, which promises lower risk of thermal cracking of early-age concrete.