• Title/Summary/Keyword: Hydration energy

Search Result 182, Processing Time 0.02 seconds

Effect of Temperature on the Water Uptake during Soaking of Soybeans (대두의 수화속도에 미치는 침지온도의 영향)

  • Kim, Dong-Youn;Suh, In-Sook;Rhee, Chong-Ouk
    • Applied Biological Chemistry
    • /
    • v.31 no.1
    • /
    • pp.46-51
    • /
    • 1988
  • The effects of temperature on the water uptake rate of soybeans soaked in tap water and 0.5% $NaHCO_3$ solution were studied. The higher the soaking temperature, the faster the hydration rate, and among the three soybean varieties (Tanyob, Kwanggyo and Saeal), Tanyob(the smallest variety) showed faster rate than ocher varieties when soaking in tap water and 0.5% $NaHCO_3$ solution. Activation energy due to weight increase was calculated using Arrhenius equation. z-Values calculated from weight changes to reach different degrees of hydration during soaking showed the tendency to decrease with the increase of hydration degree when soaking in tap water and 0.5% $NaHCO_3$ solution.

  • PDF

Starch properties of milled rices differing in hydration rates (쌀의 수화 그룹별 전분의 성질)

  • Kim, Chang-Joo;Kim, Sung-Kon;Jae, Jae-Chun;Kwon, Joong-Ho
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 1991
  • Twenty-six japonica and 19 Tongil type milled rices were grouped based on water uptake rate at $23^{\circ}C$ and interrelationships between starch properties and hydration group were investigated. There were no significant differences in relative crystallinity, transmittance increase rate of 0.1% starch suspension and soluble amylose between japonica and Tongil type rices. The gel volume of starch n 3M KSCN solution of Tonsil type rice starch was significantly higher than that of japonica one. However, no correlations were observed between starch properties and hydration groups.

  • PDF

Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

  • Brearley, Matt B.
    • Safety and Health at Work
    • /
    • v.8 no.4
    • /
    • pp.327-328
    • /
    • 2017
  • Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (${\leq}5$ minutes) due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift.

The influence of L-arginine as an additive on the compressive strength and hydration reaction of Portland cement

  • Yildiz, Mine Kurtay;Gerengi, Husnu;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • The concrete quality relies on general factors like preparation technique, uniformity of the compaction, amount and appropriateness of the additives. The current article investigates the impact of a well knows amino acid, L-arginine as an additive on water requirements, setting durations and characterization of various cement samples. Compressive strength tests of reference and L-arginine added cements at age of 2, 7 and 28 days were carried out according to TS-EN 196-1. Samples were blended by incorporating various amounts of L-arginine (25 ppm, 50 ppm and 75 ppm) in the cement water mixture which were tested with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TG), scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDS) on the 28th day. Results revealed that L-arginine does not affect the setting time, volume expansion of cement and water demands negatively; rather it imparts enhanced sustainability to the samples. It was determined that the highest value belonged to the 75L mortar with an increase of 2.6% compared to the reference sample when the compressive strengths of all mortars were compared on the 28th day. Besides, it has been observed that the development of calcium silicate hydrate or C-S-H gel, calcium hydroxide or CH and other hydrated products are associated with each other. L-arginine definitely has a contribution in the consumption of CH formed in the hydration process.

Kinetic Study of Hydrations and Volume Change of Soybeans during Soaking (침지중 콩의 흡수 및 부피변화의 속도론적 연구)

  • Kim, Dong-Hee;Yum, Cho-Ae;Kim, Woo-Jung
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.18-23
    • /
    • 1990
  • Seven varieties of soybeans(Paldal, Danyeob, Jangbaek, Baegun, Jangyeob and 2 cultivars of Local 1 and Local 2) were investigated to compare the water uptake properties and volume changes during soaking in water. The hydration properties showed that the equilibrated weight increase ratio decreased as the soaking temperature raised to higher than $40^{\circ}C$, while the initial water uptake rate increased upto $80^{\circ}C$. The increase in hydration showed a linear relationship with the square root of the soaking time at $4^{\circ}{\sim}60^{\circ}C$. Local 1 was the highest in water uptake rate constant while Local 2 was the lowest. The activation energy calculated was in the range of $3,246{\sim}4,694\;cal/mole$. The Jangbaek and Local 1 were the highest and the Paldal was the lowest in the rate of volume increase. The activation energy for volume increase was in the range of $3,310{\sim}4,190\;cal/mole$. The z-values calculated from volume change was a little higher than those obtained from weight change.

  • PDF

Current Sensing Atomic Force Microscopy Study of the Morphological Variation of Hydrated Pronton Exchange Membrane (Current Sensing Atomic Force Microscopy를 이용한 PEM의 수화 현상에 따른 모폴로지 변화 연구)

  • Kwon, Osung;Lee, Sangcheol;Son, ByungRak;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • A proton exchange membrane is a core component in the proton exchange membrane fuel cell because the role of proton exchange membrane(PEM)is supplying proton conductivity to fuel cell, a gas separator, and insulating between an anode and cathode. Among various role of PEM, supplying proton conductivity is the most important and the proton conductivity is strongly related the structural evolution of PEM by hydration. Thus a lot of studies have done by past few decade based on small angle X-ray scattering and wide angle X-ray scattering for understanding morphological structure of the PEM. Resulting from these studies, several morphological models of hydrated PEM are proposed. Current sensing atomic force microscopy (CSAFM) can map morphology and conductance on the membrane simultaneously. It can be the best tool for studying heterogenous structured materials such as PEM. In this study, the hydration of the membrane is examined by using CSAFM. Conductance and morphological images are simultaneously mapped under different relative humidity. The conductance images, which are mapped from different relative humidity, are analyzed by statistical methode for understanding ionic channel variation in PEM.

Effects of Electrolyte Concentration on Electrochemical Properties of an Iron Hexacyanoferrate Active Material (헥사시아노 철산철 활물질의 전기화학적 특성에 미치는 전해질 농도의 영향)

  • Yang, Eun-Ji;Lee, Sangyup;Nogales, Paul Maldonado;Jeong, Soon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.117-123
    • /
    • 2021
  • The effects of electrolyte concentration on the electrochemical properties of Fe4[Fe(CN6)]3(FeHCF) as a novel active material for the electrode of aqueous zinc-ion batteries was investigated. The electrochemical reactions and structural stability of the FeHCF electrode were significantly affected by the electrolyte concentration. In the electrolyte solutions of 1.0-7.0 mol dm-3, the charge-discharge capacities increased with increasing electrolyte concentration, however gradually decreased as the cycle progressed. On the other hand, in the 9.0 mol dm-3 electrolyte solution, the initial capacity was relatively small, however showed good cyclability. Additionally, the FeHCF electrode after five cycles in the former electrolyte solutions, had a change in crystal structure, whereas there was no change in the latter electrolyte solution. This suggests that the performance of the FeHCF electrode is greatly influenced by the hydration structure of zinc ions present in electrolyte solutions.

Adsorption Behaviors of Transition Metal Ions Using the Poly(N,N'-bispalmitoyl-1, 12-diaza-3, 4;9,10-dibenzo-5,8-cyclopentadecane) in Aqueous Solution (수용액에서 Poly(N,N'-bispalmitoyl-1, 12-diaza-3, 4;9,10-dibenzo-5,8-cyclopentadecane)를 이용한 전이금속이온들의 흡착특성)

  • Shin, Young-Kook;Kwon, Soo Han;Kim, Hae Joong
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.406-410
    • /
    • 1996
  • The adsorption behaviors of transition metal ions on the poly(N,N'-bispalmitoyl-1, 12-diaza-3, 4;9,10-dibenzo-5,8-cyclopentadecane) has been determined by adsorption process in aqueous solution. The order of concentration factor(CF) and the amount of adsorption were Cu(II)

  • PDF

An Exploratory Research on PCC Application of Crystalline Limestone: Effects of Limestone Crystallographic Characteristicson Hydraulic Activity

  • Yang, Ye-Jin;Jegal, Yu-Jin;Nam, Seong-Young;Kim, Jin;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Quicklime(CaO) is generally obtained through the calcination of limestone, the main component of which is calcium carbonate($CaCO_3$). Quicklime generates high-temperature heat when reacting with water, forming slaked lime($Ca(OH)_2$). The industrial sectors for limestone are determined by the hydraulic activity of slaked lime, which is obtained by measuring temperature changes during the hydration reaction. Accordingly, this study examined the different crystallographic characteristics of limestone as affected by the geological origins of the regions where the limestones were produced, and how these characteristics affected hydraulic activity. Six limestone samples were collected from the Jecheon and Cheongsong areas and the hydraulic activities were measured in accordance with KS E 3077. The results indicate that limestone produced in the Cheongsong area, recrystallized through metamorphism caused by hydrothermal alteration, hada larger grain size of calcite than that of the Jecheon area, and displays a tendency of changing to marble. Limestone from the Cheonsong area showed more radical reaction in the early stage of hydration compared to that ofthe Jecheon area. In addition, it was revealed that limestone having more impurities like $SiO_2$ have lower hydraulic activity.

Kinetic Studies on Hydration and Cooking of Rice (쌀의 수화 및 취반특성에 관한 속도론적 연구)

  • Cho, Eun-Kyung;Pyun, Yu-Ryang;Kim, Sung-Kon;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.285-291
    • /
    • 1980
  • The hydration and cooking rate of two rice varieties, Akibare (Japonica) and Milyang 23 (Indica), were investigated in terms of mathematical rate equations. The hydration rate at temperatures of $10{\sim}40^{\circ}C$ was examined by weighing method. The absorption of liquid water by rice grain was directly proportional to the square root of the hydration time. The diffusion coefficient was given by the Arrhenius relation : $D=3.151{\times}10^{-3}\exp\;(-4000/RT)$ for Akibare and $D=5.853{\times}10^{-3}\exp\;(-5700/RT)$ for Milyang 23. Milyang 23 was cooked at a faster rate than Akibare. The activation energies for cooking were in the range of 18 000 cal/mole at $90{\sim}100^{\circ}C$ and 9,000cal/mole at $100{\sim}120^{\circ}C$. However, Milyang 23 showed slightly higher activation energy of cooking at $90{\sim}100^{\circ}C$. Adhesiveness and amylograph viscosities at all reference points for Milyang 23 were higher than those for Akibare.

  • PDF