• Title/Summary/Keyword: Hydration behavior

Search Result 149, Processing Time 0.024 seconds

Analysis on the Cracking Behavior for Massive Concrete with Age-Dependent Microplane Model (재령효과를 고려한 미소면 모델을 적용한 매스콘크리트의 균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Lee, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Concrete structure that has been constructed in real field is on multi-axial stress state condition. After placing of concrete, hydration heat and shrinkage of concrete can cause various stress conditions with respect to the restraint level and condition. So, to predict the early age behavior of concrete structure, multi-axial material model is required and microplane model is acceptable. Recently, many studies have been performed on the microplane model, but the model developed up to now has been related to hardened concrete that material property is constant with concrete age. So, it is inappropriate to apply this model immediately to analyze the early age behavior of concrete. In this study, microplane model that can predict early age behavior of concrete was developed and cracking analysis using that was performed to describe cracking behavior for massive concrete sturucture.

  • PDF

Grinding Method for Increasing Specific Surface Area of Fluidized Bed Fly Ash

  • Lim, Chang Sung;Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.153-159
    • /
    • 2019
  • In this study, fly ash of a fluidized bed boiler produced in a power plant was stabilized by hydration and carbonation reaction. Then, each raw material was pulverized by two kinds of grinding equipment (Planetary mills and pot mills); the degree of grinding and the agglomeration behavior were observed. It was found that there were changes of specific surface area and particle size distribution according to grinding time. The surface of the raw material was observed using an optical microscope. As a result, agglomerates of about 75 ㎛ or more due to electrostatic phenomenon were formed as the grinding time became longer; it was confirmed that the crushing efficiency slightly increased with use of antistatic agent.

Synthesis of Shrinkage Reducing Superplasticizer(SRS), and Mechanical properties and Hydration Behavior (수축저감 특성이 부여된 고유동화제 합성 및 성능에 관한 연구)

  • Shin, Jin-Yong;Park, Hun-Il;Lee, Byung-Youn;Yun, Hee-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.203-204
    • /
    • 2010
  • In this study, We synthesized new generation of superplasticizer(SP) which show a shrinkage reducing effect as well as water reducing effect with adequate slump retention in a wide range of water cement ratio by introduction a shrinkage-reducing group into the molecular structure. To investigate effects of the SRS on the hydration of cement, DSC have been analysed. Also the general and shrinkage properties of the concrete were evaluated.

  • PDF

A Temperature Management of Mass Concrete for Crack Control in Machine Foundation (기계기초 매스콘크리트의 균열제어를 위한 온도관리)

  • 허택녕;이제방;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.394-401
    • /
    • 1996
  • This paper persents the crack control of mass concrete in massive machine foundation. The dimension of the machine foundation is 52.6m$\times$14.4m$\times$8.5m. The one distinctive characteristic of mass concrete is thermal behavior. Since the cement-water reaction is exothermic by nature, the temperature rises inside the massive concrete structure. When the heat is not quickly dissipated, it can be quite high. Significant tensile stresses may develop from the volume change associated with the increase of decrease of temperature within the mass concrete structure. To avoid occurrence of harmful cracks due to hydration heat, special attention shall be given to the construction of mass cnocrete structures. The temperature control system of mass concrete is proposed in this paper. This system contains a discussion of materials and concrete mix proportioning, thermal analysis, curing method, temperature control, and measurement of hydration heat. As will be seen throughout the paper, the proposed temperature control system have a great effect on the temperature-related cracks on mass concrete structures.

  • PDF

Fly ash-Slag-Cement Composite

  • Bang, Wan-Keun;Lee, Seung-Kyou;Lee, Seung-Heun;Kim, Chang-Eun
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.286-290
    • /
    • 2000
  • The hydration behavior of fly ash and slag on cement paste were investigated. Early stage of hydration reaction was delayed by mixing fly ash and/or slag with cement, but production of C-S-H hydrates by pozzolanic reaction densified the microstructure. The Ca/Si ratio of C-S-H hydrates in OPC and blended cement of fly ash 50%, slag 50%, fly ash+slag 50% were 2.24, 1.80, 1.82 and 1.97, respectively. The C-S-H gel with low Ca/Si ratio showed rather reticulate than needle-like structure.

  • PDF

Ab initio and Vibrational Predissociation Studies on Methylammonium-(Water)4 Complex: Evidence for Multiple Cyclic and Non-cyclic Hydrogen-bonded Structures

  • Kim, Kwang-Yon;Han, Woon-Hui;Cho, Ung-In;Lee, Yuan T.;Boo, Doo-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2028-2036
    • /
    • 2006
  • The combined ab initio and vibrational predissociation (VP) spectroscopic studies on methylammonium-$(water)_4$ complex aimed at understanding the hydration behavior of an amphiphilic ion core are described. The ab initio calculations predicted eleven low-energy isomers forming cyclic, tripod, chain, and caged structures, and their relative stabilities, total hydration energies and thermodynamic functions at 298 K and 150 K. The excellent correlation between the observed VP spectra and ab initio spectra for bonded N-H, bonded O-H and free O-H stretches suggested co-existence of five cyclic isomers and two non-cyclic isomers in ion beam at 150 K, consistent with the trends of calculated Gibbs free energies.

Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing

  • Shu, Chun-Ya;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.487-502
    • /
    • 2015
  • This study investigated particle expansion in basic oxygen furnace slag (BOF) and desulfurization slag (DSS) after heat curing by using the volume method. Concrete hydration was accelerated by heat curing. The compressive strength, ultrasonic pulse velocity, and resistivity of the concrete were analyzed. Maximum expansion occurred in the BOF and DSS samples containing 0.30-0.60 mm and 0.60-1.18 mm particles, respectively. Deterioration was more severe in the BOF samples. In the slag aggregates for the complete replacement of fine aggregate, severe fractures occurred in both the BOF and DSS samples. Scanning electron microscopy revealed excess CH after curing, which caused peripheral hydration products to become extruded, resulting in fracture.

On the Chemical Diffusion Coefficient of H2O in AB1-xBxO(3-x/2)-type Perobskites

  • Baek, Hyun-Deok;Virkar, Anil V.
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.827-831
    • /
    • 2003
  • In proton-conducting perovskites, oxygen ions and protons make a diffusion pair for a chemical diffusion and thus lead to the transport of $H_2O$ under its chemical potential gradient. The present manuscript develops relationships between the chemical diffusion coefficient of $H_2O$ and the diffusion coefficients of protons and oxygen vacancies with an emphasis on the thermodynamic behavior of the oxygen vacancies. Depending on the degree of hydration X, two different expressions of the chemical diffusion coefficient were obtained : equation omitted and equation omitted.

A Study for Analyzing the Mechanism of Enhanced Cementitious Reactivity of Bottom Ash by Using Functional Grinding Agent (기능성 분쇄조제를 통한 건조저회의 시멘트 반응성 메커니즘 분석 연구)

  • Ahyeon Lim;Hyunuk Kang;Juhyuk Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.271-280
    • /
    • 2024
  • In this study, commercially available chemical activator was utilized as a grin din g agen t for bottom ash to develop bottom ash blended cement. The hydration characteristics of the bottom ash blended cement were analyzed using X-ray diffraction and thermogravimetric analysis. In particular, the PONKCS method was employed to quantify the amorphous C-S-H and bottom ash. The use of chemical activator delayed the hydration reaction of the cement and reduced the reactivity of the bottom ash. However, appropriate delay of hydration and enhanced reaction of aluminate successfully led to the formation of a substantial amount of monocarboaluminate. Consequently, the use of chemical activator greatly improved the compressive strength of the bottom ash blended cement, resulting in the 20240713development of high-performance bottom ash blended cement.

The Structural Analysis of Corrugated Polyethylene-Plastic Form Panel and Concrete of Composite System (요철형 PE-PANEL과 콘크리트 합성구조물의 구조해석)

  • 김두환;박태인;박우영;한석규
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.91-96
    • /
    • 2001
  • Theoretical definitions of mixed behavior of PE panel and connote should have preceded to cause a mixed behavior of connote and polyethylene which have different elastic module, one-line expansion coefficients, poison ratios, compressive strengths and tensile strengths. Consequently, changes are analyzed through experiment process to identify the effects on interpretation of mixed behavior on the basis of temperature change of structures, temperature rise of concrete other than PE panel due to hydration heat temperature rise of concrete other than PE panel due to drying and contraction, working of hydrostatic pressure by storage and temperature gradient From the results of interpretation of the analysis, it is concluded that PE panel have slight influences on the change of guess of structures and maintains structural stability compared with concrete structures without PE panel.

  • PDF