• 제목/요약/키워드: Hydration Reaction

검색결과 361건 처리시간 0.02초

포틀랜드 시멘트 수화반응에 있어 Znic Chloride의 영향에 관한 연구 (A Study on the Influence of ZinC Chloride In Portland Cement Hydration Reaction)

  • 정현구;이경희;조재우;이재원
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.681-685
    • /
    • 2000
  • The influence of ZnCl2 in portland cement hydration was studied. The hydration reaction was progressed with ZnCl2 solution to observe the adiabatic hydration exothermic and hydration products. To compare with cement hydration, Ca(OH)2 solution reacted with ZnCl2 was carried out. The addition of ZnCl2 solution to the portland cement was retarded hydration quantitatively. Because ZnO which was produced in certain pH adsorbed with unhydrated cement made retarded the hydration reaction.

  • PDF

초고성능 콘크리트의 수화모델에 대한 연구 (Analysis of hydration of ultra high performance concrete)

  • 왕하이롱;왕소용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

콘크리트의 수화도 및 단열온도상승량 예측모델 개발 (Mathematical Modelling of Degree of Hydration and Adiabatic Temperature Rise)

  • 오병환;차수원;신경준;하재담;김기수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.883-887
    • /
    • 1998
  • Hydration is the main reason for the growth of the material properties. A exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development all material properties should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The latter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration.

  • PDF

Prediction of compressive strength of slag concrete using a blended cement hydration model

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.247-262
    • /
    • 2014
  • Partial replacement of Portland cement by slag can reduce the energy consumption and $CO_2$ emission therefore is beneficial to circular economy and sustainable development. Compressive strength is the most important engineering property of concrete. This paper presents a numerical procedure to predict the development of compressive strength of slag blended concrete. This numerical procedure starts with a kinetic hydration model for cement-slag blends by considering the production of calcium hydroxide in cement hydration and its consumption in slag reactions. Reaction degrees of cement slag are obtained as accompanied results from the hydration model. Gel-space ratio of hardening slag blended concrete is determined using reaction degrees of cement and slag, mixing proportions of concrete, and volume stoichiometries of cement hydration and slag reaction. Furthermore, the development of compressive strength is evaluated through Powers' gel-space ratio theory considering the contributions of cement hydration and slag reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and slag substitution ratios.

Hydration Analysis of Fine Particle and Old Mortar Attached on the Surface of Recycled Aggregate

  • Ko, Dong-Woo;Choi, Hee-Bok
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.460-467
    • /
    • 2012
  • When recycled aggregate with old mortar and particles is used in concrete mixing, such aggregates can affect hydration reaction by promoting or inhibiting it. In this study, the possibility of hydration reaction on old mortar and particle was analyzed. Hydration reaction was carried out in old mortar that is finely crushed by an impact machine in the production of recycled aggregates, and it was found that this did have an impact on the strength development of concrete. Unlike in old cement, the hydration reaction did not progress in the particles, and it had high amounts of silica powder and calcium carbonate. In conclusion, the old mortar can have the influence of improving compressive strength, but the particles can delay the setting time of recycled aggregate concrete.

백운석의 소성 조건에 따른 제조 Mg crown의 특성에 관한 연구 (A Study on the Characteristics of Manufactured Mg Crown on the Calcining Conditions of Dolomite)

  • 황대주;유영환;이종대
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.611-625
    • /
    • 2021
  • 국내에서 채광한 백운석(Ca·Mg(CO3)2) (20~30 mm)을 활용하여 Mg crown을 제조하였다. 백운석을 사용하여 경소 백운석(CaO·MgO)을 제조하기 위하여, (a) 전기로(950 ℃, 480분)와 (b) 마이크로웨이브 가열로(950 ℃, 60분)를 사용하는 공정을 적용한 결과를 서로 비교하였다. 전기로 공정의 경우에는 CaO 56.9 wt%, MgO 43.1 wt%, 마이크로웨이브 가열로 공정의 경우에는 CaO 55 wt%, MgO 45 wt%가 얻어졌다. 마이크로웨이브 가열로를 사용한 공정에서는 백운석의 탈탄산 반응 시간을 1/8로 단축하여도 경소백운석을 제조할 수 있었다. 수화 시험(hydration reaction, ASTM C110)은 경소백운석의 수화 반응성의 기준이 되는데, 전기로 공정의 경우에는 고 반응성(최고 온도 79.8 ℃/1.5 분)을 나타내었다. 이러한 수화 반응은 CaO의 수화 반응에 의해 일어나는 것을 XRD 분석 결과에서 확인할 수 있었으며, 마이크로 가열로 공정의 경우에는 저 반응성(최고 온도 81.7 ℃/19.5 분)을 나타내었다. 이러한 낮은 수화 반응성은 CaO의 수화 반응이 일어난 후에 MgO의 수화 반응이 일어나서 CaO와 MgO가 모두 수화물 형태로 되는 것을 XRD 분석 결과에서 확인하였다. 전기로와 마이크로웨이브 가열로를 사용하여 1,230 ℃, 60분, 5 × 10-2 torr의 조건에서 규소열환원 공정으로 제조한 Mg crown은 전기로 공정의 경우에 58.8 g 그리고 마이크로웨이브 가열로 공정의 경우에 74.6 g을 얻을 수 있었다.

$\alpha$-Tricalcium Phosphate의 Tris. Solution에서의 수화특성 (Hydration Properties of $\alpha$-Tricalcium Phosphate in Tris. Solution)

  • 인경필;최상흘
    • 한국세라믹학회지
    • /
    • 제30권11호
    • /
    • pp.905-910
    • /
    • 1993
  • $\alpha$-tricalcium phosphate($\alpha$-TCP) powders were synthesized and their hydration properties were investigated in Tris. solution. Two kinds of $\alpha$-TCP powder samples were prepared; the one is reaction product of CaHPO4.2H2O and CaCO3, and another is that of hydroxyapatite(HAp) and $\beta$-Ca2P2O7. They were satisfied with Ca/P mole ratio 1.5 and were heated at 150$0^{\circ}C$ for 5 hours. In the hydration of $\alpha$-TCP samples the powder which was synthesized from HAp and $\beta$-Ca2P2O7 was hydrated faster than that from CaHPO4.2H2O and CaCO3. The hydration reaction of $\alpha$-TCP powder transformed rapidly into HAp accompanying setting and hardening. It was realized that the hydration reaction of $\alpha$-TCP was due to the solution-precipitation mechanism and the hydrates from the reaction were Ca-deficient HAp having funtional group HPO42-.

  • PDF

중금속이온이 시멘트의 수화 및 미세구조에 미치는 영향 (The Effects of the Heavy Metal Ions on the Hydration and Microstructure of the Cement Paste)

  • 김창은;이승규
    • 한국세라믹학회지
    • /
    • 제30권11호
    • /
    • pp.967-973
    • /
    • 1993
  • The effect on the hydration of cement was that Cu and Pb reacted with alkali to form soluble hydrates at theinitial stage and then there followed a slow reaction forming insoluble metal hydroxides. These hydroxides were deposited on the surface of cement particles providing a barrier against further hydration. But as a slow reaction continued, the insoluble layers were eventually destroyed and the hydration reaction resumed. Thereafter, another retardation occured by restricting the polymerization of silicates, shown by FT-IR spectroscopy analysis. In the case of Cr, as its reaction with cement caused H2O, the coordinator of Cr complex, to replace or polymerize with OH-, the formation of Cr complex promoted the leakage of OH- and increased the heat of dissolution. So the total heat evolution during hydration was larger than that in the case of Pb or Cu. The retarding effect of heavy metal ions was in the order Pb>Cu>Cr.

  • PDF

제지(製紙) Sludge-Cement Board의 제조가능성(製造可能性)에 관(關)한 연구(硏究)(I) -수화반응(水和反應)에 의(依)한 경화장해지수측정(硬化障害指數測定)- (Studies on Manufacturing Possibility of Paper Sludge- Cement Board (I) -Measurement of Inhibitory Index by Hydration Reaction-)

  • 김은익;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권3호
    • /
    • pp.74-81
    • /
    • 1993
  • This experiment was carried out to investigate the reaction of hydration of paper sludge during the setting of portland cement in a paper sludge, wood-cement-water mixturte. The percentage of paper sludge per cement is 7.5%, 15%, 30% respectively. The result indicated that the sludge of 7.5% had the most effect on reaction of hydration, and the sludge of 15% had moderately inhibitory effect but there is still possibility to make sludge-cement board. Paper sludge of 30%, Pinus koraiensis Sieb. et Zucc and Populus euramericana Guinier were proved to have the worst inhibitory effect on cement hydration, so pretreatment will be needed before making board with paper sludge-cement mixture.

  • PDF

고상반응에 의한 3CaO.${3Al_2}{O_3}$.$CaSO_4$ 클링커의 제조 및 수화 (Synthesis and Hydration Property of 3CaO.${3Al_2}{O_3}$.$CaSO_4$ Clinker by Solid State Reaction)

  • 전준영;김형철;조진상;송종택
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.459-465
    • /
    • 2000
  • 3CaO.3Al2O3.CaSO4(C4A3)clinker was prepared by solid state reaction and then its hydration property was investigated. C4A3 clinker was fired at various temperatures in the range of 700~135$0^{\circ}C$. The hydration of it was studied by XRD, DSC, Solid-state 27Al MAS NMR and SEM. According to the results, the Ca4A3 clinker was produced by reacting calcium aluminates with CaSO4 and Al2O3 and C4A3 was formed as a main phase after calcining at 120$0^{\circ}C$. The hydration products were mainly calcium monosulfoaluminate hydrate and Al(OH)3, and they were produced after 2hrs of hydration. However the hydration rate was about 74% at 3days.

  • PDF