• Title/Summary/Keyword: Hydration Heat

Search Result 712, Processing Time 0.022 seconds

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

A study on the Effect of Calcium Chloride Admixture on strengths of Concrete (혼화제인 염화칼슘이 콘크리트 강도에 미치는 영향에 관한 연구)

  • Jun, Hyun-Woo;Lim, Chong-Kook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2419-2425
    • /
    • 1971
  • In many cold weather concrete constructison jobs calcium chloride $CaCl_2$ can be used safely as an accelerating admixture. For producing satisfactory concrete during cold weather calcium chloride is used to develop the level of strength required in a shorter period by obtaining higher early strength, the resulting in crease in heat of hydration. In this paper, to get adequated data and information of the effect on strength of concrete in using calcium chloride as an accelerating admixture, Portland cement (Type I), High-early-strength cement(Type II) and Pozzolans cement with certain 1.5 percentage of calcium chloride by weight of the cement were tested. As the result of this experiment, followings were founded: 1. At the 1.5 percent of calcium chloride cement ratio, the early strength was accelerated to the highest level, and some 1.5 percent of calcium chloride cement ratio was suitable for the stabilization of the concrete structures. 2. For Some 50 percent of Water Cement ratio was suitable, making good Concrete in the Cold weather by admixture of Calicum Chloide. 3. The concrete of Pozzorans cement in early strength was weak but that in later rised by degree. 4. As abtaining higher early strength the curing period can be reduced, but the finishing work should be done as early as possible.

  • PDF

Material Characteristics of Rapid Hardening Cement Paste Using Phase Change Material for Semi-rigid Pavement (상변화물질을 사용한 반강성 포장용 초속경시멘트 페이스트 재료의 성능평가)

  • Kim, Seung-Su;Lee, Byung-Jae;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2016
  • A study to apply phase change material(PCM) to rapid hardening cement paste forming semi-rigid pavement was carried out. The characteristics fresh and hardened paste were evaluated through the experiment for a total of 6 mixtures according to the cement type and the substitution of phase change material for acrylate. The fluidity by substituting phase change material for acrylate satisfied the target flow time of 10 to 13 seconds. In case of setting time, it was possible to secure the performance of rapid hardening cement by substituting phase change material, and if the substitution ratio over 60%, the initial set occurred 1 to 2 minutes faster than other mixtures. In case of compressive strength and bond strength, it showed similar strength characteristics with the plain mixture, and it satisfied both the target compressive and bonding strength of 36MPa and 2MPa. The mixture substituting phase change material showed higher resistance to chloride ion penetration than the mixture only using acrylate and the OPC level was insufficient. From the results of physical and mechanical performances of semi-rigid pavement cement paste, the phase change material substitution rate of 20% was effective in the range of this study.

Convergence study of mechanical properties and biocompatability of Ti Gr4 surface coated with HA using plasma spray for ossoeintegration (골융합 촉진을 위한 Ti Gr4의 HA 코팅에 대한 물리적 특성과 생체안정성에 대한 융합적 연구)

  • Hwang, Gab-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.145-151
    • /
    • 2021
  • This study aimed to investigate the efficient conduct of HA coating on Ti Gr4 for the practical use of medical device. Ti Gr4 alloy specimens measuring 𝜱 25mm × 1mm were sprayed with hydroxyapatite using thermal spray according to ASTM F1185-88. The surface was evaluated at #120, #400, #1,000 sandpaper and barrel finishing. Each coating properties was analyzed using SEM, UTS 20,000psi cap. and in vitro cytotoxicity. Surface morphology consists of well molten particles with very little resolidified or unmolten areas. The average Ca/P ratio is 1.74 which is in good agreement with theoretical value of 1.67. The average roughness Ra is very representative of roughness of specimen. The coatings are dense and well adhered to the substrate. The average bond strength was 61.74 MPa with a standard deviation of 4.06 which indicates fairly reliable results for ASTM 633 type tests. Variations in results from jig design, epoxy used, crosshead speeds etc. in vitro cytotoxicity result had a Grade 3. The results of the study are expected to be helpful in osseointegration and plasma-spray HA coated Ti Gr4 are more satisfactory in HA coating thickness elevation which is preferable to any other system.

Osmoregulatory Physiology in Ixodidae Ticks: An Alternative Target for Management of Tick (진드기의 수분조절 생리와 진드기 방제전략)

  • Maldonado-Ruiz, L. Paulina;Kim, Donghun;Park, Yoonseong
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.91-100
    • /
    • 2022
  • Ticks are the arthropod vector capable of transmitting diverse pathogens, which include bacteria, viruses, protozoan and fungi. Ticks are able to survive under stressful environmental conditions. One of evolutionary outcomes of these obligatory hematophagous arthropods is the survival for extended periods of time without a blood meal during off-host periods. Water conservation biology and heat tolerance have allowed ticks to thrive even under high temperatures and low relative humidity, thus they have become highly successful arthropods as they are distributed globally. Tick osmoregulatory physiology is a complex mechanism, which involves multiple osmoregulatory organs (salivary glands, Malpighian tubules, hindgut and synganglion) for the acquisition and excretion of water and ions. Blood feeding and water vapor uptake have been early reported as the primary passages for ixodid tick to acquire water. Recently, we have learned that ticks can actively drink environmental water allowing hydration. The acquired water can be traced to the salivary glands (type I acini) and the midgut diverticula. This opens new avenues for tick management through the delivery of toxic agents into their drinking water, in addition to an alternative strategy for the study of tick physiology. Here we address the osmoregulatory physiology in the ixodid ticks as a potential target physiological mechanism for tick control. We discuss the implications of water drinking behavior for tick control through the delivery of toxic agents and discuss the dermal excretion physiology as an additional pathway to induce tick dehydration and tick death.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

A Effect of Chemical Composition and Replacement Ratio of Limestone Admixture on Initial Cement Characteristics (석회석 혼합재의 화학성분과 치환량이 시멘트 초기 물성에 미치는 영향)

  • Dong-Kyun Suh;Gyu-Yong Kim;Jae-Won Choi;Kyung-Suk Kim;Ji-Wan Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • Utilizing admixture, which is one of the raw material replacement method in the cement industry, is expected to be easily and quickly put to practical use as it is relatively more accessible than other methods. Among cement admixtures, limestone powder is reported to be able to improve cement performance through nucleation effects, chemical effects, and filler effects, so it is a material expected to be suitable as a cement admixture. Meanwhile, as high-quality limestone is depleted around the world, the use of limestone with clay or high magnesia (MgO) content is becoming increasingly inevitable. Therefore, in this study, we attempted to evaluate the suitability of limestone cement as a admixture by measuring the basic properties of limestone cement mixed with limestone of different qualities commonly used in Korea. As a result, the effect of alite reaction promotion was confirmed regardless of the chemical composition of the limestone binder. However, the dilution effect depending on the substitution amount was greater than the chemical composition. It is believed that normal-grade limestone can be used as a mixture as long as the limestone content in cement is within 15 % in this scope of study. In the future, we plan to evaluate the impact of the chemical composition of the limestone mixture through additional experiments depending on the chemical composition of cement.

The CH3CHO Removal Characteristics of Lightweight Aggregate Concrete with TiO2 Spreaded by Low Temperature Firing using Sol-gel Method (Sol-gel법으로 이산화티탄(TiO2)을 저온소성 도포시킨 경량골재콘크리트의 아세트알데히드(CH3CHO) 제거 특성)

  • Lee, Seung Han;Yeo, In Dong;Jung, Yong Wook;Jang, Suk Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.129-136
    • /
    • 2011
  • Recently studies on functional concrete with a photocatalytic material such as $TiO_2$ have actively been carried out in order to remove air pollutants. The absorbtion of $TiO_2$ from those studies is applied by it being directly mixed into concrete or by suspension coated on the surface. When it comes to the effectiveness, the former process is less than that of the latter compared with the $TiO_2$ use. As a result, the direct coating of $TiO_2$ on materials' surface is more used for effectiveness. The Surface spread of it needs to have a more than $400^{\circ}C$ heat treat done to stimulate the activation and adhesion of photocatalysis. Heat treat consequently leads hydration products in concrete to be dehydrated and shrunk and is the cause of cracking. The study produces $TiO_2$ used Sol-gel method which enables it to be coated with a low temperature treat, applies it to pearlite using Lightweight Aggregate Concrete fixed with a low temperature treat and evaluates the spread performance of it. In addition to this, the size of pearlite is divided into two types: One is 2.5 mm to 5.0 mm and the other is more than 5.0 mm for the benefit of finding out the removal characteristics of $CH_3CHO$ whether they are affected by pearlite size, mixing method and ratio with $TiO_2$ and elapsed time. The result of this experiment shows that although $TiO_2$ produced by Sol-gel method is treated with 120 temperature, it maintains a high spread rate on the XRF(X ray Florescence) quantitative analysis which ranks $TiO_2$ 38 percent, $SiO_2$ 29 percent and CaO 18 percent. In the size of perlite from 2.5 mm to 5.0 mm, the removal characteristic of $CH_3CHO$ from a low temperature heated Lightweight concrete appears 20 percent higher when $TiO_2$ with Sol-gel method is spreaded on the 7 percent of surface. In other words, the removal rate is 94 percent compared with the 72 percent where $TiO_2$ is mixed in 10 percent surface. In more than 5.0 mm sized perlite, the removal rate of $CH_3CHO$, when $TiO_2$ is mixed with 10 percent, is 69 percent, which is similar with that of the previous case. It suggests that the size of pearlite has little effects on the removal rate of $CH_3CHO$. In terms of Elapsed time, the removal characteristic seems apparent at the early stage, where the average removal rate for the first 10 hours takes up 84 percent compared with that of 20 hours.

An Experimental Study on the Required Performances of Roof Concrete Placed in the In-ground LNG Storage Tank (지하식 LNG 저장탱크의 지붕 콘크리트의 요구성능에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.339-345
    • /
    • 2013
  • This study is to derive from the required performances and the optimum mix proportion of the roof concrete placed in the in-ground LNG storage tank with a capacity of 200000 $m^3$, and propose the actual data for site concrete work. The concrete placing work without sliding and segregation in the fresh concrete condition is very important because the slope of domed roof is varied in the large range by its curvature. Also the control of hydration heat and the strength development at test ages are classified with massive section about 1.4 m thick and considered to the pre-stressing work and removal of air support after concrete placing work. Considering above condition, slump range is selected $100{\pm}25$ mm under the slope $20^{\circ}$ and $150{\pm}25$ mm over the slope $20^{\circ}$ s until 60 minutes of elapsed time. Also, the roof concrete is satisfied with compressive strength range including design strength at 91 days (30 MPa), pre-stressing work at 7 days (10 MPa), air support removal work at 21 days (14 MPa). Replacement ratio of limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the optimum mix proportion of the roof concrete used low heat cement is as followings. 1) Replacement ratio of limestone powder 25% by confined water ratio test 2) Water-cement ratio 57.8% 3) Sand-aggregate ratio 42.0%. Also, test results for the adiabatic temperature rising test is satisfied with its criteria and shown the lower value compared to preceding storage tank (TK-13, 14). These required performances and the optimum mix proportion is to apply the actual construction work.

The Beneficial Effects of Pectin on Obesity In vitro and In vivo (In vitro 및 In vivo에서 펙틴의 비만 억제 효과)

  • Kwon, Jin-Young;Ann, In-Sook;Park, Kun-Young;Cheigh, Hong-Sik;Song, Yeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • The effects of pectin on obesity was studied using 3T3-L1 pre-adipocytes and rats fed 20% high fat diets. The concentration of leptin released from 3T3-L1 adipocytes in the presence of pectin was significantly decreased by 85% compared to that of the control (p<0.05), however, glycerol concentration was not changed. These data indicate that pectin seems to inhibit lipids accumulation in the adipocytes rather than enhance the lipolytic activity. Forty Sprague Dawley rats were fed 20% high fat diet for 8 weeks to induce obesity and then divided equally into four groups. Experimental groups were normal diet group (ND), high fat diet group (HFD), HDF with 10% pectin group (HFP10), and HDF with 20% pectin group (HFP20). Diet for the each group was prepared to be iso-caloric following AIN-76 guideline. After obesity was induced, rats were placed on an restricted diet for 9 weeks. The body weight of HFD increased 50% (p<0.05) compared to the ND, while it was decreased by 12% and 16% for HFP10 and HFP20, respectively (p<0.05). The relative amount of visceral fats for HFDl0 and HFD20 were decreased by 45% and 59% compared to that of HDF (130%), respectively (p<0.05). Pectin seems to have a greater effect on reducing visceral fats accumulation than weight reduction. Significantly increased level of triglyceride, total cholesterol or LDL-cholesterol in the plasma of HFD was returned to the normal or even below the normal by pectin diet, while the level of HDL-cholesterol increased. Lipid lowering effect was also observed in the liver and heart. These effects of pectin were dosedependent. In conclusion, the beneficial effect of pectin on the obesity was observed from cell culture experiment and animal study in terms of inhibiting the accumulation of lipids in the adipocytes.