Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.0.005

Osmoregulatory Physiology in Ixodidae Ticks: An Alternative Target for Management of Tick  

Maldonado-Ruiz, L. Paulina (Department of Entomology, Kansas State University)
Kim, Donghun (Department of Vector Entomology, Kyungpook National University)
Park, Yoonseong (Department of Entomology, Kansas State University)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 91-100 More about this Journal
Abstract
Ticks are the arthropod vector capable of transmitting diverse pathogens, which include bacteria, viruses, protozoan and fungi. Ticks are able to survive under stressful environmental conditions. One of evolutionary outcomes of these obligatory hematophagous arthropods is the survival for extended periods of time without a blood meal during off-host periods. Water conservation biology and heat tolerance have allowed ticks to thrive even under high temperatures and low relative humidity, thus they have become highly successful arthropods as they are distributed globally. Tick osmoregulatory physiology is a complex mechanism, which involves multiple osmoregulatory organs (salivary glands, Malpighian tubules, hindgut and synganglion) for the acquisition and excretion of water and ions. Blood feeding and water vapor uptake have been early reported as the primary passages for ixodid tick to acquire water. Recently, we have learned that ticks can actively drink environmental water allowing hydration. The acquired water can be traced to the salivary glands (type I acini) and the midgut diverticula. This opens new avenues for tick management through the delivery of toxic agents into their drinking water, in addition to an alternative strategy for the study of tick physiology. Here we address the osmoregulatory physiology in the ixodid ticks as a potential target physiological mechanism for tick control. We discuss the implications of water drinking behavior for tick control through the delivery of toxic agents and discuss the dermal excretion physiology as an additional pathway to induce tick dehydration and tick death.
Keywords
Water balance; Osmoregulation; Dermal excretion; Ticks;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, D., Simo, L., Vancova, M., Urban, J., Park, Y., 2019. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen. Comp. Endocrinol. 278, 42-49.   DOI
2 Sonenshine, D.E., 2013. Excretion and water balance: hindgut, malpighian tubules and coxal glands, in: Sonenshine, D.E., Roe, R.M. (Eds.), Biology of ticks. Oxford University Press, New York, pp. 2016-2218.
3 Sonenshine, D.E., Roe, R.M., 2013b. Biology of Ticks Volume 2. Oxford University Press, Incorporated, Cary, United States.
4 Splisteser, H., Tyron, U., 1986. Untersuchungen zu faunistischen besonderheiten und zur aktivitat von Dermacentor nuttalli in der Mongolischen Volksrepublik. Monatshefte fur Veterinarmedizin 414, 126-128.
5 Terrien, J., Perret, M., Aujard, F., 2011. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428-1444.   DOI
6 Wharton, G.W., Richards, A.G., 1978. Water vapor exchange kinetics in insects and acarines. Annu. Rev. Entomol. 23, 309-328.   DOI
7 Yoder, J.A., Benoit, .J.B., Bundy, M.R., Hedges, B. Z., Gribbins, K.M., 2009. Functional morphology of secretion by the large wax glands (Sensilla sagittiformia) Involved in tick defense. Psyche J. Entom. 2009, 1-8.
8 Sonenshine, D.E., 1991b. Water balance in non-feeding ticks, in: Sonenshine, R. (Ed.), In Biology of Ticks, New York, pp. 398-412.
9 Albers, M.A., Bradley, T.J., 2004. Osmotic regulation in adult Drosophila melanogaster during dehydration and rehydration. J. Exp. Biol. 207, 2313-2321   DOI
10 Benoit, J.B., Denlinger, D.L., 2010. Meeting the challenges of onhost and off-host water balance in blood-feeding arthropods. J. Insect. Physiol. 56, 1366-1376.   DOI
11 Beyenbach, K.W., 2003. Transport mechanisms of diuresis in Malpighian tubules of insects. J. Exp. Biol. 206, 3845-3856.   DOI
12 Coast, G.M., 2009. Neuroendocrine control of ionic homeostasis in blood-sucking insects. J. Exp. Biol. 212, 378-386.   DOI
13 Maldonado-Ruiz, L.P., Park, Y., Zurek, L., 2020. Liquid water intake of the lone star tick, Amblyomma americanum: Implications for tick survival and management, Scientific Reports. p. 6000.
14 Lahondere, C., Insausti, T.C., Paim, R.M.M., Luan, X., Belev, G., Pereira, M.H., Ianowski, J.P., Lazzari, C.R., 2017. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs. eLife 6, e26107.   DOI
15 Dantas-Torres, F., Chomel, B.B., Otranto, D., 2012. Ticks and tickborne diseases: a one health perspective. Trends Parasitol. 28, 437-446.   DOI
16 Freda, T.J., Needham, G.R., 1984. Water exchange kinetics of the long star tick Amblyomma americanum, in: Griffiths, D.A., Bowman, C.E. (Eds.) Acarology Vol.6, Horwood, Chichester, pp. 358-364.
17 Hamdy, B.H., Sidrak, W., 1982. Guanine biosynthesis in the Ticks (Acari) Dermacentor Andersoni (Ixodidae) and Argas (Persicargas) Arboreus (Argasidae): Fate of Labelled Guanine Precursors 1, 2. J. Med. Entomol. Suppl. 19, 569-572.   DOI
18 Kaufman, W.R., Phillips, J.E., 1973. Ion and water balance in the Ixodid tick Dermacentor Andersoni. I. Routes of Ion and Water Excretion. J. Exp. Biol. 58, 523-536.   DOI
19 Lees, A.D., 1946. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37, 1-20.   DOI
20 Londt, J.G., Whitehead, G.B., 1972. Ecological studies of larval ticks in South Africa (Acarina: Ixodidae). Parasitology 65, 469-490.   DOI
21 Norval, R.A., 1977. Studies on the ecology of the tick Amblyomma hebraeum Koch in the eastern Cape province of South Africa. II. Survival and development. J. Parasitol. 63, 740-747.   DOI
22 Nuttall, P.A., 2019a. Tick saliva and its role in pathogen transmission. Wien. Klin. Wochenschr. 2019, 1-12.
23 Perner, J., Kropackov a, S., Kopacek, P., Ribeiro J.M.C., 2018. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS. Negl. Trop. Dis. 12, 1-17.
24 Kahl, O., Alidousti, I., 1997. Bodies of liquid water as a source of water gain for Ixodes ricinus ticks (Acari: Ixodidae). Exp. Appl. Acarol. 21, 731-746.   DOI
25 Meyer-Konig, A., Zahler, M., Gothe, R., 2001. Studies on survival and water balance of unfed adult Dermacentor marginatus and D. reticulatus ticks (Acari: Ixodidae). Exp. Appl. Acarol. 25, 993-1004.   DOI
26 Orchard, I., Leyria, J., Al-Dailami, A., Lange, A.B., 2021. Fluid secretion by malpighian tubules of rhodnius prolixus: Neuroendocrine control with new insights from a transcriptome analysis. Front. Endocrinol. 12, 772487.
27 WHO, 2014. A global brief on vector-borne diseases. Tech. Rep.
28 Pavis, C., Mauleon, H.,Barre, N., Maibeche, M., 1994. Dermal gland secretions of tropical bont tick,Amblyomma variegatum (Acarina: Ixodidae): Biological activity on predators and pathogens. J. Chem. Ecol. 20, 1495-1503.   DOI
29 Sauer, J.R., Essenberg, R.C., Bowman, A.S., 2000. Salivary glands in ixodid ticks: control and mechanism of secretion. J. Insect. Physiol. 46, 1069-1078.   DOI
30 Hsu, M.H., and Sauer, J. R., 1974. Sodium, Potassium, Chloride and water balance in the feeding lone star tick, Amblyomma americanum (Linneaus) (Acarina: Ixodidae). J. Kans. Entomol. Soc. 47, 536-537.
31 Yoder, J.A., Hedges, B.Z., Tank, J.L., Benoit, J.B., 2009. Dermal gland secretion improves the heat tolerance of the brown dog tick, Rhipicephalus sanguineus, allowing for their prolonged exposure to host body temperature. J. Therm. Biol. 34, 256-265.   DOI
32 Walker, A.R., Lloyd, C., Mcguire, K., Harrison, S.J., Hamilton, J., 1996. Integumental glands of the tick Rhipicephalus appendiculatus (Acari:Ixodidae) as potential producers of semiochemicals. J. Med. Entomol. 33 5, 743-759.   DOI
33 Walker, A.R., Lloyd, C.M., McGuire, K., Harrison, S.J., Hamilton, J.G.C., 2014. Integument and Sensillum Auriforme of the Opisthosoma of Rhipicephalus appendiculatus (Acari: Ixodidae). J. Med. Entomol. 33, 734-742.
34 Wigglesworth, V.B., 1931. The physiology of excretion In a bloodsucking insect; Rhodnius prolixus; (Hemiptera, Reduviidae). J. Exp. Biol. 8, 411.   DOI
35 Yoder, J.A., Pollack, R.J., Spielman, A., 1993. An ant-diversionary secretion of ticks: First demonstration of an acarine allomone. J. Insect. Physiol. 39, 429-435.   DOI
36 Kim, D., Maldonado-Ruiz, P., Zurek, L., Park, Y., 2017. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ 5, e3984.   DOI
37 Abbas, R.Z., Zaman, M.A., Colwell, D.D., Gilleard, J., Iqbal, Z., 2014. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 203, 6-20.   DOI
38 Maddrell, S., O'Donnell, M., 1992. Insect Malpighian tubules: V-ATPase action in ion and fluid transport. J. Exp. Biol. 172, 417-429.   DOI
39 Needham, G.R., Teel, P.D., 1986. Water balance by ticks between bloodmeals, in: Sauer, J.R., Hair, J.A., (Eds.), Morphology, physiology and behavioral biology of ticks. Ellis Horwood Limited, Chinchester, England, pp. 100-151.
40 Nuttall, P.A., 2019b. Wonders of tick saliva. Ticks Tick Borne Dis. 10, 470-481.   DOI
41 Kim, D., Urban, J., Boyle, D.L., Park, Y., 2016. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci. Rep. 6, 21047.   DOI
42 Knulle, W., Devine, T.L., 1972. Evidence for active and passive components of sorption of atmospheric water vapour by larvae of the tick Dermacentor variabilis. J. Insect. Physiol. 18, 1653-1664.   DOI
43 Lahondere, C., Lazzari, C.R., 2012. Mosquitoes cool down during blood feeding to avoid overheating. Curr. Biol. 22, 40-45.   DOI
44 Berridge, M.J., 1970. Osmoregulation in terrestrial arthropods, in: Flokin, M. (Ed.), Chemical zoology V5: Arthropoda Part A, Part 1. Academic Press, New York, pp. 287-316.
45 Pant, R., 1988. Nitrogen excretion in insects. Proc. Indian Acad. Sci. (Anim. Sci). 97, 379-415.   DOI
46 Sauer, J.R., Hair, J.A., 1971. Water balance in the lone star tick (Acarina: Ixodidae): the effects of relative humidity and temperature on weight changes and total water content. J. Med. Entomol. 8, 479-485.   DOI
47 Guglielmone, A.A., Robbins, R.G., Apanaskevich, D.A., Petney, T.N., Estrada-Pena, A., Horak, I.G., Shao, R., Barker, S.C., 2010. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa 2528, 1-28.   DOI
48 Hackman, R.H., Filshie, B.K. 1982. The tick cuticle, Physiology of Ticks (Vol 1.). Pergamon Press, UK, pp. 1-42.
49 Jongejan, F., Uilenberg, G., 2004. The global importance of ticks. Parasitology 129 Suppl, S3-14.   DOI
50 Walker, A.R., Fletcher, J.D., Gill, H.S., 1985. Structural and histochemical changes in the salivary glands of Rhipicephalus appendiculatus during feeding. Int. J. Parasitol. 15, 81-100.   DOI
51 Rudolph, D., Knulle, W., 1974. Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature 249, 84-85.   DOI
52 Lees, A.D., 1948. Passive and active water exchange through the cuticle of ticks. Discuss. Faraday Soc. 3, 187-192.   DOI
53 Benoit, J.B., Lazzari, C.R., Denlinger, D.L., Lahondere, C., 2019. Thermoprotective adaptations are critical for arthropods feeding on warm-blooded hosts. Curr. Opin. Insect. Sci. 34, 7-11.   DOI
54 Wilkinson, P.R., 1953. Observations on the sensory physiology and behaviour of larvae of the cattle tick, Boophilus Microplus (Can.) (Ixodidae). Aust. J. Zool. 1, 345-356.   DOI
55 Mullen, G.R., Durden, L.A., 2002. Ticks (Ixodida), medical and veterinary entomology. Academic Press, Amsterdam, pp. 517-558.
56 CDC, 2018. Tickborne diseases in the United States: A reference manual for healthcare providers, 5 ed, https://www.cdc.gov/ticks/tickbornediseases/TickborneDiseases-P.pdf (accessed on 20 December, 2020).
57 Chen, A., Holmes Sp Fau - Pietrantonio, P.V., Pietrantonio, P.V., 2004. Molecular cloning and functional expression of a serotonin receptor from the Southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Mol Biol. 13, 45-54.   DOI
58 Coles, T.B., Dryden, M.W., 2014. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & Vectors 7, 8.   DOI
59 Crompton, A.W., Taylor, C.R., Jagger, J.A., 1978. Evolution of homeothermy in mammals. Nature 272, 333-336.   DOI
60 De la Fuente, J., Estrada-Pena, A., Venzal, J.M., Kocan, K.M., Sonenshine, D.E., 2008. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938-6946.
61 Simo, L., Koci J., Park, Y., 2014. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the blacklegged tick Ixodes scapularis. J. Comp. Neurol. 522, 2038-2052   DOI
62 Sonenshine, D.E., 1991a. Life cycles of ticks, in: Sonenshine, D.E., Roe, R.M. (Eds.), Biology of ticks, New York, pp. 51-66.
63 Sonenshine, D.E., Roe, R.M., 2013a. Biology of Ticks Volume 1. Oxford University Press, Incorporated, Cary, United States.
64 Stobbart, R.H., 1977. The control of the diuresis following a blood meal in females of the yellow fever mosquito Aedes aegypti (L). J. Exp. Biol. 69, 53-85.   DOI
65 Thiemann, T., Fielden, L.J., Kelrick, M.I., 2003. Water uptake in the cat flea Ctenocephalides felis (Pulicidae: Siphonaptera). J. Insect. Physiol. 49, 1085-1092.   DOI
66 Valenzuela, J.G., Francischetti, I.M.B., Pham, V.M., Garfield, M.K., Mather, T.N., Ribeiro, J.M.C., 2002. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 205, 2843-2864.   DOI
67 Simo, L., Park, Y., 2014. Neuropeptidergic control of the hindgut in the black-legged tick Ixodes scapularis. Int. J. Parasitol. 44, 819-826.   DOI
68 Dipeolu, O.O., Ogunji, F.O., 1980. Laboratory studies on factors influencing the oviposition and eclosion patterns of Amblyomma vagieratum (Fabricius, 1794) females. Folia Parasitol. 27, 257-264.
69 Kim, D., Simo, L., Park, Y., 2014. Orchestration of salivary secretion mediated by two different dopamine receptors in the blacklegged tick Ixodes scapularis. J. Exp. Biol. 217, 3656-3663.   DOI
70 Simo, L., Koci, J., Zitnan, D., Park, Y., 2011. Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands. PLoS ONE 6, e16158.   DOI