• Title/Summary/Keyword: Hydrated-Lime

Search Result 64, Processing Time 0.024 seconds

Initial Behavior and Shrinkage Properties of Lime Mortars for Restoration of Cultural Heritage According to the Mixing Ratio (석회 종류와 배합비 별 문화재 보수용 석회 모르타르의 초기거동특성과 수축특성 연구)

  • Nam, Byeong Jik;Noh, Sang Kyun;Kim, Eun Kyung;Ahn, Sun Ah;Kang, So Yeong
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.456-474
    • /
    • 2020
  • This study investigated the initial behavior (flowability and setting properties) and shrinkage characteristics of lime mortar, based on the mixing ratio of hydrated lime (lump, powder) and commercial lime, which is primarily used for repairing and restoring cultural assets. The flowability showed that the optimum mixing water contents of the masonry lime mortar were 8-10% for the lump hydrated lime, 10-18% for the powdered hydrated lime, and 17-40% for the commercial hydrated lime. The results of the setting and shrinkage analysis showed that the average final setting time ratio compared to the standard of cultural asset repair was in the increasing order of commercial hydrated lime(0.4) < powder hydrated lime(5.6) < lump hydrated lime(5.7). Moreover, the average shrinkage ratio was ordered as lump hydrated lime(1.1) < powder hydrated lime(1.2) < commercial hydrated lime(3.0). The analysis of the physical and chemical characteristics of hydrated lime showed that the optimum mixing water content was reduced as the particle size of the lime increased, thus delaying the setting time and decreasing the length change rate (shrinkage). These results are expected to contribute to the prediction of the initial behavior and shrinkage characteristics of mortars using handmade and commercial lime during repair and restoration work on cultural, heritage buildings.

Reduction of Soil Loss from Sloped Agricultural Field by using Hydrated Lime (소석회를 이용한 급경사 농경지 토양유실 저감)

  • Koh, Il-Ha;Yu, Chan;Park, Mi Jeong;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • The feasibility of using hydrated lime ($Ca(OH)_2$) was assessed in reducing soil loss in sloped land under field condition. During 6-month monitoring from May to October, amendment of hydrated lime (3%, w/w) to a test plot decreased soil loss by 76% as compared to the unamended plot. However, the growth of natural vegetation was hampered by hydrated lime addition due to pH increase. Hydrated lime can be used as an effective agent to prevent soil loss in sloped land, but additional treatments are needed to preserve vegetation growth, especially in crop fields.

Stabilization of As Contaminated Soils using a Combination of Hydrated Lime, Portland Cement, FeCl3·6H2O and NaOH (소석회, 포틀랜드 시멘트, FeCl3·6H2O, NaOH를 이용한 비소 오염토양의 안정화)

  • Moon, Deok-Hyun;Oh, Da-Yeon;Lee, Seung-Je;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • The purpose of this study was to investigate the effectiveness of a stabilization treatment for As contaminated soil. A combination of hydrated lime, Portland cement, $FeCl_3{\cdot}6H_2O$, and NaOH were used as stabilizing agents. The effectiveness of stabilization treatment was evaluated by the Korean Standard Test (KST) method (1N HCl extraction). Sequential extractions were performed to investigate the As distribution after treatment. Following the application of the treatment, curing periods of up to 7 and 28days were investigated. The experimental results showed that a combination of hydrated lime/Portland cement was more effective than treatments of hydrated lime or Portland cement at immobilizing As in the contaminated soil. The treatment of 25wt% hydrated lime and 5wt% Portland cement was effective in reducing As leachability less than the Korean warning standard of 20 mg/kg. However, the treatments of hydrated lime and Portland cement failed to meet the Korean warning standard even when up to 30 wt% was used. The treatment utilizing hydrated lime and $FeCl_3{\cdot}6H_2O$ was not effective in properly reducing As leachability. The addition of $FeCl_3{\cdot}6H_2O$ was negative in terms of pH condition. Moreover, the treatment with hydrated lime/NaOH was effective in reducing As leachability but not as much as hydrated lime/Portland cement. The sequential extraction results indicated that the residual phase was greatly increased upon the treatment of hydrated lime/Portland cement. It was concluded that the hydrated lime/Portland cement treatment was the best among the other combinations studied at achieving trace As concentrations.

Evaluation of Moisture Susceptibility of Porous Hot Mixed Asphalt Mixtures with Hydrated Lime using Non-destructive Impact Test (비파괴 충격파 시험을 통한 소석회 첨가 투수성 가열 아스팔트 혼합물의 수분민감성 평가)

  • Kim, Dowan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.77-87
    • /
    • 2015
  • PURPOSES: It is theoretically well known all over the world, that porous hot mixed asphalt (HMA) with hydrated Lime improves moisture and rutting resistance, and reduces pothole occurrence frequency, as well as the life cycle cost (LCC). METHODS : Addictive in the two different formations of the liquid anti-stripping Agent and powder Hydrated-Lime was applied in this investigation in order to obtain relatively clear results according to their types and conditions. Firstly, the moisture conditions were set, and applied to the porous HMA mixtures with hydrated lime (anti-stripping agent). Next, it was followed by a non-destructive test with the application of three freeze-thaw cycles, which were individually carried out thrice to compare the results of the dynamic moduli. Lastly, the hydrated lime effect related to moisture sensibility to porous HMA has been verified through the analysis of the modulus results regarding the change rate of dynamic modulus per n-cycle. RESULTS: It is clear from this investigation, that the dynamic modulus is inversely proportional to the change in temperature, as the graph representing the rigidity of the thermorheologically simple (TRS) material showed gradual decline of the dynamic modulus with the increase in temperature. CONCLUSIONS: The porous HMA mixture with the anti-stripping agent (hydrated Lime) has been found to be more moisture resistant to freezing and thawing than the normal porous HMA mixture. It is clear that the hydrated lime helps the HMA mixture to improve its fatigue resistance.

Moisture Damage Evaluation of Asphalt Mixtures depending on the Types of Anti-Stripping Agent (아스팔트 혼합물의 박리방지제의 종류 및 함량에 따른 박리저항성 분석)

  • Choi, Sung Ho;Kim, Won Jae;Le Van, Phuc;Lee, Hyun Jong;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.45-50
    • /
    • 2014
  • PURPOSES : The objective of this study is to analyze the performance of anti-stripping agent depending on its type and content to reduce pothole, an increasing pavement distress due to abnormal climate intensity. METHODS : In the past years, U.S and many countries in Europe use hydrated lime and liquid anti-stripping agent in asphalt mixtures. Hydrated lime or liquid anti-stripping agent is substituted for filler and binder, respectively, to improve the anti-stripping property of asphalt mixtures. To investigate this, indirect tensile strength test was performed and TSR values were compared for different content of hydrated lime and types of liquid anti-stripping agent in asphalt mixture. RESULTS : Test results indicate that hydrated lime remarkably increased the asphalt mixture performance on anti-stripping denoted by the increased in TSR values from 55% to 100%. Liquid anti-stripping agent also increased the value of TSR but not significant. In addition, depending on the types of aggregate, TSR values and effect of liquid anti-stripping were different. CONCLUSIONS : Using anti-stripping agents improve the anti-stripping property of asphalt mixture especially hydrated lime; however, more experiments should be conducted to improve the reliability about the effect of liquid anti-stripping agent.

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

Application of Hydrated Lime-Modified Asphalt Mixture Properties to Korean Pavement Research Program (한국형 도로포장 설계 프로그램의 소석회 사용 아스팔트 혼합물 특성 적용)

  • Kim, Dowan;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSES : The hydrated lime-modified asphalt, which improves moisture resistance, is normally used for pavements to reduce the number of potholes. However, the method of applying the material properties of the lime-modified asphalt mixture for use in pavements is not covered in the Korean Pavement Research Program (KPRP). The objective of this research is to find a method for the design application of lime-modified asphalt's material properties to the KPRP. METHODS: The section for test design is selected in some conditions which are related to the level of design regarding Annual Average Daily Traffic (AADT). To define the application methods of hydrated lime in the KPRP, the models of fatigue, rut and international roughness index (IRI) are determined based on the M-EPDG test results from some earlier research results. Moreover, it is well known that dynamic moduli of the unmodified mixture are not different from those of the lime-modified mixture. RESULTS: The performance results of hydrated lime-modified asphalt pavement were not very much different from those of the unmodified pavement, which meant the limited design regulations regarding fatigue failure, rutting deformation and IRI. CONCLUSIONS: The KPRP uses the weather model from the data for previous 10 years. It implies that the KPRP cannot predict abnormal climate changes accurately. Hence, the predictive weather data regarding the abnormal climate changes are unreliable. Secondly, the KPRP cannot apply the moisture resistance of asphalt mixtures. Therefore, a second level of design study will have to be performed to reflect the influence of moisture. It means that the influence on pavement performance can be changed by the application of hydrated lime in asphalt mixture design.

Effects of Amount of Slaking Water on Physical and Chemical Properties of Handmade Hydrated Lime used for Preservation of Architectural Heritage (소화에 사용되는 물의 양이 건축 문화재 보존용 수제 소석회의 물리 및 화학적 특성에 미치는 영향)

  • Kang, Sung-Hoon;Hwang, Jong-Kook;Kwon, Yang-Hee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Handmade hydrated lime has been used for preservation and repair of architectural heritage in Korea. However, the effect of the amount of water used for slaking quicklime on the physical and chemical properties of the hydrated lime, which is the result of the slaking process, has not been clearly understood. In this study, particle size distribution, chemical composition and crystalline phases of the hydrated lime are investigated by varying the amount of water used for the slaking. In addition, temperature history during the slaking process is examined. For this, various experiments, such as laser diffraction analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and temperature recording using a thermocouple, were performed. When the quicklime came into contact with water, its temperature reached $100^{\circ}C$ within 10 min due to sudden exothermic reaction of calcium oxide, and this temperature was maintained for about 30 min. The water to lime ratio influenced the cooling rate during the slaking process; that is, the more water was used, the longer it took to reach an ambient temperature. The amount of water for the slaking did not have a noticeable effect on the contents of major components of the hydrated lime such as calcium hydroxide and calcium carbonate, but when slaked with more amount of water, average particle size of the lime tended to decrease. The experimental results in this study can be used as references for developing guidelines on the safety or appropriate amount of water in the lime slaking process.

Durability of the Solidified Mine Tailing-Hydrated Lime Mixture Against Repeated Freezing and Thawing (폐광미-소석회 고화체의 동결융해 내구성에 관한 연구)

  • Min, Kyoung-Won;Lee, Hyun-Cheol;Kim, Tae-Poong
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.65-69
    • /
    • 2008
  • The tailings piled in abandoned mines are well-known potential sources of soil contamination. Hydrated limes were applied as cementing materials to solidify heavy metal contaminated tailings for the purpose of reducing their toxicity and migration rates. The optimum mixing ratio of tailings, hydrated lime, and water was determined through a preliminary test. The mixtures of mine tailings and hydrated lime solidified through pozzolanic reaction were tested for their durability against repeated freezing and thawing processes. After repeated freezing and thawing, the uniaxial compressive strengths of all the solidified mixture specimens decreased in comparison with those before test but still higher than $3.5kgf/cm^2$, the standard recommended for land reclamation solids by EPA(Environmental Protection Agency), which suggested that hydrated lime be a potential material to treat the abandoned mine tailings for the environmental purpose.

  • PDF

Physical and Mechanical Properties of Waterwaste Sludge and Stabilized Sludge (슬러지 및 안정화시킨 하수 슬러지의 물리적.역학적 특성)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.97-104
    • /
    • 1999
  • An experimental investigation was carried out to study the feasibility of using the stabiliozed sludge, as a backfill and cutoff-water materials for embankment structures. For stabilizing of sludge, hydrated lime and quick lime were used as additive, and a series of tests were performed on the sludge and the stabilized sludge to examine their physical and mechanical properties , compaction, compressive strength, hydraulic conuctivity and consolidation characteristics. From the test results, physical and mechanical properties of the stabilized sludge were improved as compared with the sludge. Especially from the viewpoint of physcial property, consolidation or settlement and cutoff-water, quick lime is more effective than the hydrated lime as a stabilization addtive. But, viewpoint of compaction and shear strength, hydrated lime is more effective than the quick lime as a atabilization additive. As a result of this study, it was found that the stabilized sludge can be developed the backfill and cutoff-water materials, improved the stabilizing method of sludge.

  • PDF