• Title/Summary/Keyword: Hydorgen production

Search Result 4, Processing Time 0.018 seconds

Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production (지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구)

  • Kim, Woo-Jin;Kang, Kyoung-Soo;Kim, Chang-Hee;Choi, Won-Chul;Kang, Yong;Park, Chu-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.505-513
    • /
    • 2008
  • The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

Hydrogen Evolution through Mixed Continuous Culture of Rhodopseudomonas sphaeroides and Clostridium butyricum (Rhodopseudomonas sphaeroides와 Clostridium butyricum의 혼합배양을 통한 수소생성의 연속발효계)

  • Go, Young-Hyun;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 1999
  • The purpose of this study was to optimize the conditions of continuous mixed culture of C.butyricum and R. spaeroides K-7, which were able to produce hydrogen using biomass-dreived substrate. To investigate the possibility of continuous culture, semi-continuous culture was carried out for 20 days. In semi-continuous culture using the reactor system, the replacement rate of fresh medium was 30% of total medium volume for the highest hydrogen evolution. In continuous culture, the optimum dilution rate was determined to be 0.05$h^{-1}$. The continuous culture produced 3.1 times as compared with the hydrogen on batch culture. On the other hand, the continuous mixed culture produced 1.3~2.1 times as much as hydrogen of the continuous monoculture of C. butyricum. When 10g of glucose in the media (1l) was supplied as a carbon source on continuous culture, mixed culture of C. butyricum and R. sphaeroides K-7 increased hydrogen evolution rate. Because considerable amount of glutamate was contained in waste water of glutamate fermentation, utilization of glutamate was examined in mixed culture. As a result of examination, production of hydorgen was slightly inhibited by high concentration of glutamate, more than 20mM, on continuous monoculture of R. sphaeroides K-7. On the other hand, both on continuous monoculture of C. butyricum and on mixed culture of C. butyricum and R. sphaeroides K-7, production of hydrogen was not inhibited by high concentration of glutamate such as 100mM. Hence this suggests that high concentration of waste water can be used as good substrate for hydrogen production on monoculture of C. butyricum and mixed culture of C. butyricum and R. sphaeroides K-7.

  • PDF

Hydorgen Production by Catalytic Decomposition of Propane Over Cabon-Based Catalyst (탄소계 촉매를 이용한 프로판 분해 반응에 의한 수소 생산)

  • Yoon, Suk Hoon;Han, Gi Bo;Lee, Jong Dae;Park, No-Kuk;Ryu, Si Ok;Lee, Tae Jin;Yoon, Ki June;Han, Gui Young
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.668-674
    • /
    • 2005
  • It is reported that a method for the hydrogen production from the propane decomposition using carbon black as a catalyst is more effective than from the methane decomposition. Since the by-products like CO and $CO_2$ are not produced by the direct decomposition of propane, it is considered as an environmentally sustainable process. In this study, hydrogen was produced by the direct decomposition of propane using either commercial activated carbon or carbon black at atmospheric pressure in the temperature range of $500-1,000^{\circ}C$. Resulting products in our experiment were not only hydrogen but also several by-products such as methane, ethylene, ethane, and propylene. Hydrogen yield increased as temperature increased because the amount of those by-products produced in the experiment was inversely proportional to temperature. The achieved hydrogen yield at $750^{\circ}C$ with commercial DCC N330 catalyst was 22.47% in this study.

Hydrogen Peroxide Modulates Phospholipase $A_2$ Aactivity and Endogenous Oxidative Stress in the Free Radical Induced Acute Lung Injury (과산화수소에 의한 급성폐손상시 염증성 지질분자의 생성기전에 관한 연구)

  • Bae, Chi-Hoon;Kang, Hyung-Seok;Lee, Sub;Jheon, Sang-Hoon;Ahn, Wook-Wu;Kwon, Oh-Choon
    • Journal of Chest Surgery
    • /
    • v.35 no.5
    • /
    • pp.343-349
    • /
    • 2002
  • background: In an attempt to investigate the role of oxidants in the activation of phospholipase $A_2$(PLA$_2$) and endogenous oxidative stress in the lung. acute inflammatory lung injury was induced by the instillation of hydrogen peroxide into the trachea of Sprague-Dawley rats. Material and Method: To prove the hypothesis thats released oxidants from neutrophils activate the PLA$_2$ retrogradely, activities of PLA$_2$ and lysoplatelet activating factor acetyltransferase(lysoPAF AT) were assayed i hours after instillation of hydrogen peroxide. In addition, to confirm the impairing effects of the activation of PLA$_2$ associated with endogenous oxidative stress, lung weight/body weight ratio(L$\times$10$^{-3}$ B), protein contents(mg/two lungs) in bronchoalveolar lavage(BAL) were measured. As neutrophilic respiratory burst has been known to play a pivotal role in the genesis of endogenous oxidative stress associated with acute inflammatory lung injury, BAL neutrophils counts and level of lung myelperoxidase(MPO) were measured after hydorgen peroxide insult. Morphological and histochemical studies were also performed to identify the effect of the endogenous oxidative stress. Result: Five hours after hydrogen peroxide instillation, lungs showed marked infiltration of neutrophils and increased weight. Protein contents in BAL increased significantly compared to those of normal rats. PLA$_2$ activity was enhanced in the hydrogen peroxide instilled group. Interestingly, the accelerated production of platelet activating factor(PAF) was confirmed by the increased activity of lysoPAF AT in the $H_2O$$_2$ employed lung. Morphologically, light microscopic findings of lungs after instillation of hydrogen peroxide showed atelectasis and infiltration of inflammatory cells, which was thought to be caused by lipid mediators produced by PLA$_2$ activation. In cerium chloride cytochemical electron microscopy, dense deposits of cerrous perhydroxide were identified. In contrast, no deposit of cerrous perhydroxide was found in the normal lung.