• Title/Summary/Keyword: Hybrid-power

Search Result 2,333, Processing Time 0.033 seconds

Experimental Investigations for Thermal Mutual Evaluation in Multi-Chip Modules

  • Ayadi, Moez;Bouguezzi, Sihem;Ghariani, Moez;Neji, Rafik
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1345-1356
    • /
    • 2014
  • The thermal behavior of power modules is an important criterion for the design of cooling systems and optimum thermal structure of these modules. An important consideration for high power and high frequency design is the spacing between semiconductor devices, substrate structure and influence of the boundary condition in the case. This study focuses on the thermal behavior of hybrid power modules to establish a simplified method that allows temperature estimation in different module components without decapsulation. This study resulted in a correction of the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on mutual thermal coupling between different chips of the hybrid structure. A new experimental technique for thermal mutual evaluation is presented. Notably, the classic analysis of thermal phenomena in these structures, which was independent of dissipated power magnitude and boundary conditions in the case, is incorrect.

Development of 3kW Hybrid ESS with Function of Emergency Power Supply (비상전원 기능을 갖는 3kW급 하이브리드 ESS 개발)

  • Yang, Seok-Hyun;Kim, Min-Jae;Choi, Se-Wan;Cho, Jun-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • This paper proposes a high-efficiency 3-kW hybrid ESS with emergency power supply. The proposed system enables efficient use of power from photovoltaic (PV) cells and energy storage system (ESS). The proposed system can operate as an uninterruptible power supply (UPS) when grid fault occurs, providing seamless transfer from grid-connected mode to stand-alone mode. The LLC converter for PV achieves ZVS turn-on of switches and ZCS turn-off of diodes, and the isolated bidirectional DC-DC converter for ESS achieves ZCS turn-off regardless of load condition, resulting in high efficiency. The efficiency and performance of the proposed hybrid ESS has been verified by a 3-kW prototype.

Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor (야전용 액체 연료개질 1 kW급 하이브리드 전원시스템 제어 연구)

  • Ji, Hyun-Jin;Ha, Sang-Hyun;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.732-739
    • /
    • 2011
  • A fuel cell/secondary battery hybrid power generation system could extend well beyond the efficiency and interoperability of the conventional diesel generator. The suggested power source system consists of 2.3 kW class PEMFC, 100 Ah lithium polymer battery, and two DC/DC converters by serial connection type. It was known that interoperability of sub-systems is the key factor for stable and optimal control of the hybrid power generation system. The modeling and simulation methods have been proposed to reduce the number of configurations and performance tests for components selection and select the optimized control condition of the power generation system. The control model for power source system is implemented based on the empirical formulation and carried out in the Matlab/Simulink environment. The results show that the simulation can be used to establish the algorism of prototype and increase the durability of the power source system.

Experimental Evaluation of Position Sensorless Control on Hybrid Electric Vehicle Applications

  • Choi, Chan-Hee;Kim, Bum-Sik;Lee, Young-Kook;Jung, Jin-Hwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.464-470
    • /
    • 2011
  • In this paper, the feasibility of applying a position sensorless control technique to hybrid electric vehicles (HEVs) is practically evaluated. The proposed position estimator has a straightforward structure with properties that combines the model and the saliency tracking-based rotor position estimation for interior permanent magnet synchronous motors (IPMSMs). The proposed method can be used in the event of sensor loss or sensor recovery to sustain continuity of operations. The developed system takes into account the estimated position transition between two distinct sensorless methods. The transition is enhanced by introducing a synchronized transition algorithm based on a single tracking observer. Extensive experimental results are presented to verify the principles and show a reliable estimation performance over the entire speed range including standstill under 150% load conditions.

Improved Throughput of WCDMA Downlink using Power Ramping under Retransmissions for Type I Hybrid ARQ with in Rayleigh Fading Channel (레일레이 페이딩 채널에서 유형 I 하이브리드 ARQ의 재전송시 전력 램핑를 채용하는 WCDMA 하향링크의 개선된 수율)

  • Kim, Bong-Hoe;Hwang, Seung-Hoon;Hong, Yu-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.9-12
    • /
    • 2007
  • In this paper, we propose and analyze a scheme for wireless channels, which is a combination of a type I hybrid-automatic repeat request (H-ARQ) scheme and a power ramping. The power ramping is considered for more reliable downlink data transmission, in which the transmission power is gradually changed from a small level to a large level when the number of retransmissions increases. The simulation results demonstrate that, when the power ramping step size is 0.5dB, the average throughput gain may be as high as 2% to 5% with properly selected parameters.

Control Strategy and Characteristic Analysis of Hybrid Active Power Filters with the Resonant Impedance Principle

  • Fang, Lu;Xu, Xian-Yong;Luo, An;Li, Yan;Tu, Chun-Ming;Fang, Hou-Hui
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.935-946
    • /
    • 2012
  • A new kind of resonant impedance type hybrid active filter (RITHAF) is proposed for dynamic harmonic current suppression and high capacity reactive compensation in medium and high voltage systems. This paper analyzed the different performance of the RITHAF when the active part of the RITHAF is controlled as a current source and as a voltage source, respectively. The harmonic suppression function is defined in this paper. The influences of the changes caused by the grid impedance and the detuning of the passive power filter on the compensating characteristics of the RITHAF are studied by analyzing the suppression function. Simulation and industrial application results show that the RITHAF has excellent performances in harmonic suppression and reactive compensation, which is suitable for medium and high voltage systems.

A Hybrid Static Compensator for Dynamic Reactive Power Compensation and Harmonic Suppression

  • Yang, Jia-qiang;Yang, Lei;Su, Zi-peng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.798-810
    • /
    • 2017
  • This paper presents a combined system of a small-capacity inverter and multigroup delta-connected thyristor switched capacitors (TSCs). The system is referred to as a hybrid static compensator (HSC) and has the functions of dynamic reactive power compensation and harmonic suppression. In the proposed topology, the load reactive power is mainly compensated by the TSCs. Meanwhile the inverter is meant to cooperate with TSCs to achieve continuous reactive power compensation, and to filter the harmonics generated by nonlinear loads and the TSCs. First, the structure and mathematical model of the HSC are discussed Then the control method of the HSC is presented. An improved reduced order generalized integrator (ROGI)-based selective current control method is adopted in the inverter to achieve high-performance reactive and harmonic current compensation. Meanwhile, a switch control strategy is proposed to implement precise and fast switching of the TSCs and to avoid changing the time delay needed by the conventional switch strategy. Experiments are implemented on a 20 KVA HSC prototype and the obtained results verify the validity of the proposed HSC system.

A Study on the Adoption of Power Take Off Operation Mode and Fuel-Saving Effect in the Hybrid Electric Propulsion System for a Warship (전투함 하이브리드 전기추진 시스템의 PTO 운전모드 적용 및 연료절감 효과 연구)

  • Kim, So-Yeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.40-48
    • /
    • 2019
  • Hybrid electric propulsion systems (H-EPSs) are an intermediate step for integrated full electric propulsion warships. H-EPSs are a dynamic combination of mechanical and electrical propulsion systems to achieve the required mission performances. The system modes could adapt to meet the requirement of the various operation conditions of a warship. This paper presents a configuration and operating modes of H-EPSs considering the operation conditions of a destroyer class warship. The system has three propulsion modes, namely, motoring mode, generating mode [power take off (PTO) mode], and mechanical mode. The PTO mode requires a careful fuel efficiency analysis because the fuel consumption rate of propulsion engines may be low compared with the generator's engines depending on the loading power. Therefore, the calculation of fuel consumption according to the operating modes is performed in this study. Although the economics of the PTO mode depends on system cases, it has an advantage in that it ensures the reliability of electric power in case of blackout or minimum generator operation.

Development of a Hybrid Power Generation System Using Photovoltaic Cells and Piezoelectric Materials (태양 전지와 압전 재료를 이용한 하이브리드 발전시스템 개발)

  • Kim, Yeongmin;Ahmed, Rahate;Zeeshan, Zeeshan;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.51-58
    • /
    • 2019
  • This paper deals with the operation of a hybrid power generation system made with photovoltaic cells and piezoelectric materials. The system can produce power from the wind as well as from the sun subject to their availability. Irrespective of the largeness of their power production, the power developed by both generators (i.e., phtovoltaic cells and piezoelectric cells) were combined and stored before it was applied to a load. Especially, the AC power (current) developed from each piezoelectric generator was converted by a full wave bridge rectifier and then combined prior to its storage in a capacitor. It was observed that the system can produce a maximum output power of 6.49 mW at loading resistance of $100{\Omega}$.

Modularization and Application of Hybrid Renewable Energy Process in Seosan Area (서산 지역에서의 혼합 신재생에너지 공정의 모듈화 및 적용 연구)

  • JEONG SOO AHN;MIN HYEONG KANG;CHEON KIM;KYEONG SIK SEO;SEUNG HYEON KWAK;YU JIN CHOI;TAE JIN PARK;JAE CHEOL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.212-225
    • /
    • 2023
  • This study presents a modularized process of a hybrid renewable energy system that combines photovoltaic power and wind power to supply stable power in a unit area (1 km2). The water electrolysis process and fuel cells process also contributes to the supply of the stable power. The entire system can constantly supply power of 4.39 MW/km2. Actual meteorological data is used for simulation.