• Title/Summary/Keyword: Hybrid-power

Search Result 2,342, Processing Time 0.025 seconds

The Posthuman Queer Body in Ghost in the Shell (1995) (<공각기동대>의 현재성과 포스트휴먼 퀴어 연구)

  • Kim, Soo-Yeon
    • Cross-Cultural Studies
    • /
    • v.40
    • /
    • pp.111-131
    • /
    • 2015
  • An unusual success engendering loyalty among cult fans in the United States, Mamoru Oshii's 1995 cyberpunk anime, Ghost in the Shell (GITS) revolves around a female cyborg assassin named Motoko Kusanagi, a.k.a. "the Major." When the news came out last year that Scarlett Johansson was offered 10 million dollars for the role of the Major in the live action remake of GITS, the frustrated fans accused DreamWorks of "whitewashing" the classic Japanimation and turning it into a PG-13 film. While it would be premature to judge a film yet to be released, it appears timely to revisit the core achievement of Oshii's film untranslatable into the Hollywood formula. That is, unlike ultimately heteronormative and humanist sci-fi films produced in Hollywood, such as the Matrix trilogy or Cloud Atlas, GITS defies a Hollywoodization by evoking much bafflement in relation to its queer, posthuman characters and settings. This essay homes in on Major Kusanagi's body in order to update prior criticism from the perspectives of posthumanism and queer theory. If the Major's voluptuous cyborg body has been read as a liberating or as a commodified feminine body, latest critical work of posthumanism and queer theory causes us to move beyond the moralistic binaries of human/non-human and male/female. This deconstruction of binaries leads to a radical rethinking of "reality" and "identity" in an image-saturated, hypermediated age. Viewed from this perspective, Major Kusanagi's body can be better understood less as a reflection of "real" women than as an embodiment of our anxieties on the loss of self and interiority in the SNS-dominated society. As is warned by many posthumanist and queer critics, queer and posthuman components are too often used to reinforce the human. I argue that the Major's hybrid body is neither a mere amalgam of human and machine nor a superficial postmodern blurring of boundaries. Rather, the compelling combination of individuality, animality, and technology embodied in the Major redefines the human as always, already posthuman. This ethical act of revision-its shifting focus from oppressive humanism to a queer coexistence-evinces the lasting power of GITS.

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.