• Title/Summary/Keyword: Hybrid vehicles

Search Result 471, Processing Time 0.029 seconds

Prospects of Japan's Electronic Vehicle Market: An Analysis Through Toyota Motors' Hybrid Vehicle Deployment (도요타의 하이브리드 자동차 보급 사례 분석을 통한 일본 전기자동차 시장에 대한 전망)

  • Ko, Woo Li;Kim, Kyunghwan
    • Journal of East Asia Management
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2024
  • About 100 years after the start of mass production by American car maker Ford in 1913, the automobile industry has come to a major transformation in 100 years. In this transformation period, automakers are facing the biggest challenge of converting power sources, the basis of automobiles, from existing internal combustion engines to electric vehicles. Hybrid vehicles have been released in Japan since the late 1990s, and changes in automobile power sources have occurred early. In order to gain global leadership in hybrid vehicles, Japanese automakers and the Japanese government joined forces to promote the growth of the domestic hybrid vehicle market. The government has implemented a policy to substantially subsidize the high price of hybrid cars compared to internal combustion engine cars by providing purchase subsidies and tax benefits to buyers. Toyota has increased its line-up of hybrid cars around the Prius and has further strengthened communication with customers for the sale of hybrid vehicles. As a result of continuing these efforts for about 20 years, the percentage of Japan's hybrid vehicle market in 2022 reached 51% for passenger cars. Recently, each country has been setting and promoting aggressive goals for electric vehicles that require a wider range of physical and institutional infrastructure than hybrid vehicles. This study aims to assess the growth of electric vehicles by looking at the trend of hybrid vehicles and how they've been distributed in the Japanese market.

A Study on the Feasibility of the Three Prospective Types of HEV (국내 보급 예정 하이브리드 자동차의 유형별 편익 고찰)

  • Lee, Dong-Jun;Lee, Ye-Ji;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.52-60
    • /
    • 2008
  • More people have become interested in hybrid vehicles - which have been heralded as environmentally friendly automobiles - recently as the opening of domestic hybrid vehicle market draws near. Since gasoline, diesel and LPG hybrid vehicles will be produced, a need exists to conduct economic feasibility study of each vehicle type. This research analyzed projected benefits of these hybrid vehicles based on the 1600cc model. There are two categories of benefits: 1) reduced fuel costs for the owners of the vehicles; and 2) reduced environmental pollution cost. We conducted a sensitivity analysis and estimated the domestic consumer fuel costs based on the international oil prices of 100USD, 150USD, and 200USD per barrel. The analysis showed savings of 2 to 4 million Won in fuel cost and 1 to 2 million Won in environmental pollution cost; therefore, the hybrid vehicles are not economically feasible if they are between 3 to 5 million Won more expensive than the conventional internal combustion engine vehicles.

  • PDF

Managing and Minimizing Cost of Energy in Virtual Power Plants in the Presence of Plug-in Hybrid Electric Vehicles Considering Demand Response Program

  • Barati, Hassan;Ashir, Farshid
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.568-579
    • /
    • 2018
  • Virtual power plants can be regarded as systems that have entered the network after restructure of power systems. In fact, these plants are a set of consumers capable of consuming and generating power. In response to widespread implementation of plug-in hybrid electric vehicles, further investigation of energy management in this type of power plants seems to be of great value. In effect, these vehicles are able to receive and inject power from/into the network. Hence, study of the effects of these vehicles on management of virtual power plants seems to be illuminative. In this paper, management of power consumption/generation in virtual power plants has been investigated in the presence of hybrid electric vehicles. The objective function of virtual power plants problem management is to minimize the overall costs including not only the costs of energy production in power generation units, fuels, and degradation of batteries of vehicles, but also the costs of purchasing electricity from the network. Furthermore, the constraints on the operational of plants, loads and hybrid vehicles, level of penalty for greenhouse gas emissions ($CO_2$ and $NO_x$) produced by power plants and vehicles, and demand response to the immediate price of market have all been attended to in the present study. GAMS/Cplex software system and sample power system have been employed to pursue computer implementation and simulation.

A study on engine performance of EGR valve problem in Hybrid vehicles (하이브리드 자동차의 EGR 밸브 오작동 시 엔진 성능에 미치는 영향)

  • Song, Rak Hyun;cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, Air pollution is gradually increasing which are coming from the exhaust of the ICE vehicles in the world. ICE vehicle exhaust gas and $CO_2$ are widely suspected of contributing to the called greenhouse effect, fueling fears of global warming. Therefore, many countries are striving to decrease the vehicle exhaust gas and have developed a variety of policies as air pollution regulation plans. To comply with the regulations, automotive industry has developed hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid car is eco-friendly and has lowered exhausting gases and improved fuel efficiency. This research has been written to show that break down cases with EGR valve in hybrid cars, steadily increasing in use, and to help with on-site maintenance.

Analysis of Energy Consumption Efficiency for a Hybrid Electric Vehicle According to the Application of LPG Fuel in WLTC Mode (WLTC 모드에서의 LPG 연료 적용에 따른 하이브리드 자동차 에너지소비효율 분석)

  • Jun Woo, Jeong;Seungchul, Woo;Seokjoo, Kwon;Se-Doo, Oh;Youngho, Seo;Kihyung, Lee
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.195-202
    • /
    • 2022
  • Recently, the global automobile market is rapidly changing from internal combustion engine vehicles to eco-friendly vehicles including electric vehicles. Among eco-friendly vehicles, LPG vehicles are low in fine dust and are suggested as a realistic way to replace diesel vehicles. In addition, it is more economical than gasoline in its class, showing a cost-saving effect. In Korea, the business of converting gasoline into LPG is active. Research is being conducted to apply this to hybrid vehicles. In this study, the difference in energy consumption efficiency was analyzed when LPG fuel was applied by selecting a 2-liter GDI hybrid electric vehicle. The operation of the hybrid system according to various driving characteristics was confirmed by selecting the WLTC mode. As a result, it was confirmed that the BSFC was about 5% lower than that of gasoline fuel when using LPG fuel. This is due to the active operation of the motor while driving. Optimization is required as battery consumption increases from an energy perspective.

A Study on the Effects of LPDi System Application in 2.0L Hybrid Vehicles Using Energy Flow Analysis (에너지 흐름 분석을 이용한 2.0L 급 하이브리드 차량에서의 LPDi 시스템 적용 효과 연구)

  • Young kuk An;Bonseok Koo;Jinil Park
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • This study investigates the performance of 2.0L hybrid vehicles equipped with Liquefied Petroleum Gas (LPG) fuel engines, using energy flow analysis. By incorporating a direct LPG injection system (LPDi), the research aims to overcome the reduced maximum output commonly associated with LPG engines. Moreover, the integration of a hybrid system is explored as a means to enhance vehicle fuel economy while reducing CO2 and emissions. The study employs data from FTP-75 and HWFET driving cycle to inform future research efforts focused on predicting CO2 emissions and fuel economy for Hybrid Electric Vehicles utilizing LPG Direct Injection. The findings offer insights into optimizing fuel systems for better environmental and operational performance in hybrid vehicles.

A study on the Interlock Circuit Abnormality of High Voltage System in HEV (하이브리드자동차 고전압 시스템 인터록 회로 이상 시 미치는 영향에 관한 연구)

  • Song, Rak Hyun;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • Recently, global warming has been accelerated due to air pollution and air pollutants are coming from the exhaust of the ICE vehicles, which are gradually increasing in number globally. That is why all the countries in the world are striving to reduce pollutant emissions of automobiles by strengthening regulations on air pollution. To comply with the regulations, the auto industry came up with hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid vehicles show improvements in emissions, fuel efficiency, as well as functions as electric vehicles. This study aims to show possible troubles that occur at times of damages in high-voltage systems, and to suggest responsive measures.

Relative Cost Modeling for Main Component Systems fo Parallel Hybrid Electric Vehicle (병렬 하이브리드 전기자동차의 주요 구성시스템에 대한 상대적 가격 모델링)

  • Kim, Pill-Soo;Kim,Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.294-300
    • /
    • 1999
  • There is a growing interest in hybrid electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved main component systems for the hybrid electric vehicle applications. Soon after the introduction of electric starter for internal combustion engine early this century, despite being energy efficient and nonpolluting, electric vehicle lost the battle completly to internal combustion engine due to its limited range and inferior performance. Hybrid Electric vehicles offer the most promising solutions to reduce the emission of vehicles. This paper describes a method for cost reduction estimation of parallel hybrid electric vehicle. We used a cost reduction structure that consisted of five major subsystems (three-type and two-type motor) for parallel hybrid electric vehicle. Especially, we estimated the potential for cost reductions in parallel hybrid electric vehicle as a function of time using the learning curve. Also, we estimated the potentials of cost by depreciation.

  • PDF

Optimal Fuzzy Control of Parallel Hybrid Electric Vehicles

  • Farrokhi, M.;Mohebbi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.910-914
    • /
    • 2005
  • In this paper an optimal method based on fuzzy logic for controlling parallel hybrid electric vehicles is presented. In parallel hybrid electric vehicles the required torque for deriving and operating the on-board accessories is generated by a combination of internal-combustion engine and an electric motor. The powersharing between the internal combustion engine and the electric motor is the key point for efficient driving. This is a highly nonlinear and time varying plant and its control strategy will be implemented with the use of fuzzy logic controller. The fuzzy logic controller will be designed based on the state of charge of batteries and the desired torque for driving. The output of controller controls the throttle of the combustion engine. The main contribution of this paper is the development of an optimal control based on fuzzy logic, which maximizes the output torque of the vehicle while minimizing fuel consumed by the combustion engine.

  • PDF

Research on Application of Functional Safety for Developing Combat Hybrid Electric Vehicles (하이브리드 전투차량의 기능안전성 적용 연구)

  • Chang, Kyogun;Lee, Yoon Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.543-549
    • /
    • 2012
  • Hybrid electric propulsion systems are expected as future primary combat platforms because the systems can supply enough electric power, easily locate components inside vehicles, and maneuver without undesired noise. However, increasing electric/electronic/software usage causes abnormal failure patterns which have not been noticeable in conventional automotive. Recently, the functional safety standard for road vehicles were enacted and vehicle manufacturers request their components which satisfy standardized quality. This research analyzes functional safety standards(IEC 61508 and ISO 26262) and compares the standards for road vehicles with military standards of system safety. Strategies to apply functional safety in the combat hybrid electric vehicle are scrutinized.