• Title/Summary/Keyword: Hybrid target

Search Result 334, Processing Time 0.024 seconds

Hybrid TDOA/AOA Localization Algorithm for GPS Jammers (GPS 전파교란원 위치 추정을 위한 TDOA/AOA 복합 기법 설계)

  • Lim, Deok Won;Kang, Jae Min;Heo, Moon Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.101-105
    • /
    • 2014
  • For a localization system, the TDOA (Time Difference of Arrival) measurement and AOA (Angle of Arrival) measurement are often used for estimating target's positions. Although it is known that the accuracy of TDOA based localization is superior to that of AOA based one, it may have a poor vertical accuracy in bad geometrical conditions. This paper, therefore, proposes a localization algorithm in which the vertical position is estimated by AOA measurements and the horizontal one is estimated by TDOA measurement in order to achieve high 3D-location accuracy. And this algorithm is applied to a GPS jammer localization systems because it has a large value of the DOP (Dilution of Precision) when the jammer is located far away from the system. Simulation results demonstrate that the proposed hybrid TDOA/AOA location algorithm gives much higher location accuracy than TDOA or AOA only location.

Performance Prediction of the MHT Algorithm for Tracking under Cluttered Environments (클러터 환경에서 표적 추적을 위한 다중 가설 추적 알고리듬의 성능 예측)

  • 정영헌
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.13-20
    • /
    • 2004
  • In this paper, we developed a method for predicting the tracking performance of the multiple hypothesis tracking (MHT) algorithm. The MHT algerithm is known to be a measurement-oriented optimal Bayesian approach and is superior to any other tracking filters because it takes into account the events that the measurements can be originated from new targets and false alarms as well as interesting targets. In the MHT algorithm, a number of candidate hypotheses are generated and evaluated later as more data are received. The probability of each candidate hypotheses is approximately evaluated by using the hybrid conditional average approach (HYCA). We performed numerical experiments to show the validity of our performance prediction.

Dynamic Experiment of a Full-Scale Five-story Steel Building with Viscoelastic Dampers (점탄성 감쇠기가 설치된 실물크기 5층 철골건물의 진동실험)

  • 민경원;이영철;이상현;박민규;김두훈;박진일;정정교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.239-246
    • /
    • 2002
  • Viscoelastic dampers are known effective devices for response reduction under earthquakes and winds. This study addresses how to design the optimum viscoelastic dampers installed at the full scale five-story steel building and novel approach to carry out the experimental work to verify the damper performance. First, an exciter of hybrid mass-type actuator is designed, which can move the building and its mathematical model is derived. The integrated system of building-actuator is experimentally analyzed for mathematical model. Second, convex model is applied for the prediction of required additional damping ratios to reduce responses below a specified target level. Chevron-type viscoelastic dampers are manufactured and installed at the first and second inter-stories, which are optimum places for response reduction. Sine-sweep and white noise excitations, which are generated by the hybrid mass-type actuator, are applied to the full scale building without and with dampers for performance verification. The transfer function of the building with four dampers, two of them installed at each first and second inter-story, are found to be lower than that of the building with two dampers installed at the first inter-story

  • PDF

Radar Tracking Using a Fuzzy-Model-Based Kalman Filter (퍼지모델 기반 칼만 필터를 이용한 레이다 표적 추적)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.303-306
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKF uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF

A Study On Vehicle Interior Noise Reduction Applying FRF Based Substructuring (주파수 응답함수 합성법을 이용한 차량 실내 소음 저감에 관한 연구)

  • Oh, Sang-Hoon;Kang, Yeon-June;Sun, Jong-Cheon;Song, Moon-Sung;Kim, Seong-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.122-125
    • /
    • 2006
  • The Substructure Synthesis means the technology to predict the dynamic properties of an assembly from the properties of its components, or to predict the effect of a modification on a structure. The FRF Based Substructuring method is a kind of the Substructure Synthesis and very useful to predict the efficiency of the product in the early stage of development. Especially, the Hybrid FBS method is very useful to predict the vehicle NVH characteristics after modifying some components of the vehicle. Target components can be established on the basis of test models and FE models of the prototype constructed in the early stage of development. In this study, the Hybrid FBS method was applied to vehicle subframe and car-body in order to reduce vehicle interior noise induced by engine exciting force.

  • PDF

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

Synthesis and Characteristics of New Quaternary Superhard Ti-Mo-Si-N Coatings (새로운 고경도 Ti-Mo-Si-N 코팅막의 합성 및 기계적 특성)

  • Jeon, Jin-Woo;Hong, Seung-Gyun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.245-249
    • /
    • 2006
  • In this study, ternary Ti-Mo-N and new quaternary Ti-Mo-Si-N coatings were synthesized on steel substrates(AISI D2) and Si wafers by a hybrid coating system of arc ion plating (AIP) using Ti target and d.c. magnetron sputtering technique using Mo and Si targets in $N_2/Ar$ gaseous mixture. Ternary Ti-Mo-N coatings were substitutional solid-solution of (Ti, Mo)N and showed maximum hardness of approximately 30 GPa at the Mo content of ${\sim}10$. %. The Ti-Mo-Si-N coating with the Si content of 8.8 at. % was a composite consisting of fine (Ti, Mo)N crystallites and amorphous $Si_3N_4$ phase. The hardness of the Ti-Mo-Si(8.8 at. %)-N coatings exhibited largely increased hardness value of ${\sim}48$ GPa due to the microstructural evolution to the fine composite microstructure and the refinement of (Ti, Mo)N crystallites. The average friction coefficient of the Ti-Mo-Si-N coatings largely decreased with increase of Si content. The microstructures of Ti-Mo-Si-N coatings were investigated with instrumental analyses of XRD, XPS, and HRTEM in this work.

Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process

  • Abbasi, Mohsen;Rasouli, Yaser;Jowkar, Peyman
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.285-292
    • /
    • 2018
  • In the following study, Artificial Neural Network (ANN) is used for prediction of permeate flux decline during oily wastewater treatment by hybrid powdered activated carbon-microfiltration (PAC-MF) process using mullite and mullite-alumina ceramic membranes. Permeate flux is predicted as a function of time and PAC concentration. To optimize the networks performance, different transfer functions and different initial weights and biases have been tested. Totally, more than 850,000 different networks are tested for both membranes. The results showed that 10:6 and 9:20 neural networks work best for mullite and mullite-alumina ceramic membranes in PAC-MF process, respectively. These networks provide low mean squared error and high linearity between target and predicted data (high $R^2$ value). Finally, the results present that ANN provide best results ($R^2$ value equal to 0.99999) for prediction of permeation flux decline during oily wastewater treatment in PAC-MF process by ceramic membranes.

A Hybrid QFD Framework for New Product Development

  • Tsai, Y-C;Chin, K-S;Yang, J-B
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.138-158
    • /
    • 2002
  • Nowadays, new product development (NPD) is one of the most crucial factors for business success. The manufacturing firms cannot afford the resources in the long development cycle and the costly redesigns. Good product planning is crucial to ensure the success of NPD, while the Quality Function deployment (QFD) is an effective tool to help the decision makers to determine appropriate product specifications in the product planning stage. Traditionally, in the QFD, the product specifications are determined by a rather subjective evaluation, which is based on the knowledge and experience of the decision makers. In this paper, the traditional QFD methodology is firstly reviewed. An improved Hybrid Quality Function Deployment (HQFD) [MSOfficel] then presented to tackle the shortcomings of traditional QFD methodologies in determining the engineering characteristics. A structured questionnaire to collect and analyze the customer requirements, a methodology to establish a QFD record base and effective case retrieval, and a model to more objectively determine the target values of engineering characteristics are also described.

Low-power heterogeneous uncore architecture for future 3D chip-multiprocessors

  • Dorostkar, Aniseh;Asad, Arghavan;Fathy, Mahmood;Jahed-Motlagh, Mohammad Reza;Mohammadi, Farah
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.759-773
    • /
    • 2018
  • Uncore components such as on-chip memory systems and on-chip interconnects consume a large amount of energy in emerging embedded applications. Few studies have focused on next-generation analytical models for future chip-multiprocessors (CMPs) that simultaneously consider the impacts of the power consumption of core and uncore components. In this paper, we propose a convex-optimization approach to design heterogeneous uncore architectures for embedded CMPs. Our convex approach optimizes the number and placement of memory banks with different technologies on the memory layer. In parallel with hybrid memory architecting, optimizing the number and placement of through silicon vias as a viable solution in building three-dimensional (3D) CMPs is another important target of the proposed approach. Experimental results show that the proposed method outperforms 3D CMP designs with hybrid and traditional memory architectures in terms of both energy delay products (EDPs) and performance parameters. The proposed method improves the EDPs by an average of about 43% compared with SRAM design. In addition, it improves the throughput by about 7% compared with dynamic RAM (DRAM) design.