• Title/Summary/Keyword: Hybrid supercapacitor

Search Result 59, Processing Time 0.022 seconds

Supercapacitive Properties of a Hybrid Capacitor Consisting of Co-Mn Oxide Cathode and Activated Carbon Anode (코발트망간 산화물 양전극과 활성탄 음전극으로 구성된 초고용량 커패시터 특성)

  • Kim, Yong Il;Yoon, Je Kook;Kown, Je Sung;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.440-443
    • /
    • 2010
  • A hybrid supercapacitor consisting of Co-Mn oxide as a cathode, activated carbon as an anode, and 6 M KOH as a electrolyte was fabricated and its supercapacitor performance was investigated by means of cyclic voltammetry. The prepared supercapacitor showed the specific capacitance of 67.3 F/g, energy density of 18.3 Wh/kg, and power density of 237.7 kW/kg, respectively. It means that the supercapacitor can be used for the practical applications.

Development of Hybrid Composite Die for the Production of the Supercapacitor (슈퍼커패시터 양산화를 위한 하이브리드 복합금형 개발)

  • Kwon, Hyuk Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.105-110
    • /
    • 2015
  • In this study, a high-speed procedure to be used in composite molding technology is developed for the production of a hybrid supercapacitor in a progressive and revolutionary current in a production system, as are the related operating conditions. Mold parts with solid modeling, the ease of programming of future mold product designs, tolerance management, and pre-explode tests by the building of a progressive die design system using Cimatron_E10 Die Design Software for the strip layout are done. The capacity of the super-hybrid composite mold design will save time and money through its verification of the manufacture of molds. We plan to apply this to future related products for production cost savings of more than 30% achieved by considering the components of the production costs, labor, and material costs of production as compared to conventional production methods.

The Small Photovoltaic power supply using Hybrid Supercapacitor (하이브리드 커패시터를 적용한 소형 태양광 전원장치)

  • Kim, Tae-Yeop
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.826-831
    • /
    • 2019
  • The stand-alone photovoltaic power systems are widely used for lighting equipment and CCTV. In order for these devices to be competitive, the life of power storage devices such as batteries is very important. The characteristic Hybrid supercapacitor is the high power density and long life. We have proposed a stand-alone photovoltaic power system that uses hybrid supercapacitor. The charge and discharge characteristics and the internal resistance of the hybrid capacitor were measured to configure the power converter. A stable maximum output point tracking control algorithm is proposed even with the change in solar radiation. In order to verify the validity of the proposed system, a prototype was fabricated and tested using a 18W hybrid capacitor and a 10W solar cell.

A Study on the Characteristics of Supercapacitpr Module for High Voltage System (고전압 시스템을 위한 초고용량 축전지 모듈 특성 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1237-1241
    • /
    • 2010
  • Supercapacitors as novel energy storage devices between conventional capacitors and batteries, with more specific capacitance and energy densities than conventional capacitors and more power densities than batteries are to be used in many fields. Supercapacitor is regarded as one of good alternatives for meeting the requirement of market with excellent power performance and high cyclability. This paper deals with the characteristics of charge and discharge behavior of supercapacitor module for developing 42V hybrid energy storage system with lead acid battery and supercapacitor in order to adopt to 42V power net for vehicle. An analysis performed in this paper indicates that supercapacitor storage system may be cost effective for high cycle applications.

Power control and operation of Hybrid Energy System for Building Micro-Grid (빌딩마이크로그리드시스템용 하이브리드에너지시스템 전력제어 및 운영)

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.37-41
    • /
    • 2009
  • In this paper, we propose to research the possibility of using a photovoltaic system and supercapacitor combined with a high speed microturbine. This hybrid energy system work as atand-alone mode or grid-connected mode as it will be a part of building micro-grid. Simple dynamic models of photovoltaic, microturbine systems and supercapacitor banks are proposed. their models are developed by Matlab/Simulink tool. Two important results are carried out to find power control effectiveness in case of with supercapacitor bank and without one. At least, simulation results show the effectiveness on the power control at AC busbar of hybrid energy system as building micro-grid system.

  • PDF

The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor

  • Choi, Min-Geun;Kang, Soo-Bin;Yoon, Jung Rag;Lee, Byung Gwan;Jeong, Dae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1102-1106
    • /
    • 2015
  • A hybrid supercapacitor (HS) is an energy storage device used to enhance the low weight energy density (Wh/kg) of a supercapacitor. On the other hand, a sudden decrease in capacity has been pointed out as a reliability problem after many charge/discharge cycles. The reliability problem of a HS affects the early aging process. In this study, the capacity performance of a HS was observed after charge/discharge. For detailed analysis of the initial charge/discharge cycles, the charge and discharge curve was measured at a low current density. In addition, a solid electrolyte interphase (SEI) layer was confirmed after the charge/discharge. A HC composed of a lithium titanate (LTO) anode and active carbon cathode was used. The charge/discharge efficiency of the first cycle was lower than the late cycles and the charge/discharge rate was also lower. This behavior was induced by SEI layer formation, which consumed Li ions in the LTO lattice. The formation of a SEI layer after the charge/discharge cycles was confirmed using a range of analysis techniques.

Design, Modeling and Analysis of a PEM Fuel Cell Excavator with Supercapacitor/Battery Hybrid Power Source

  • Dang, Tri Dung;Do, Tri Cuong;Truong, Hoai Vu Anh;Ho, Cong Minh;Dao, Hoang Vu;Xiao, Yu Ying;Jeong, EunJin;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • The objective of this study was to design and model the PEM fuel cell excavator with supercapacitor/battery hybrid power source to increase efficiency as well as eliminate greenhouse gas emission. With this configuration, the system can get rid of the internal combustion engine, which has a low efficiency and high emission. For the analysis and simulation, the governing equations of the PEM system, the supercapacitor and battery were derived. These simulations were performed in MATLAB/Simulink environment. The hydraulic modeling of the excavator was also presented, and its model implemented in AMESim and studied. The whole system model was built in a co-simulation environment, which is a combination of MATLAB/Simulink and AMESim software. The simulation results were presented to show the performance of the system.

Fabrication of Aluminum Powder Disk by a Template Method and Its Etching Condition for an Electrode of Hybrid Supercapacitor (Template 방법을 이용한 Hybrid Supercapacitor 전극용 알루미늄 분말 디스크 제조와 에칭 조건 연구)

  • Jin, Chang-Soo;Lee, Yong-Sung;Shin, Kyung-Hee;Kim, Jong-Huy;Yoon, Soon-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • Capacitance of a hybrid capacitor that has characteristics of both electrolyte capacitor and supercapacitor is determined by anode surface covered with oxide layer. In this study, optimal condition processes for anode to fabricate a high voltage hybrid capacitor was investigated. We mixed aluminum powder having mean particle size of $40{\mu}m$ with NaCl powders at weight ratio of 4 : 1 and prepared a disk type electrode after annealing at various temperature. After dissolving NaCl in $50^{\circ}C$ distilled water, heat treatment, eletropolishing, chemical treatment, and the first and the second etching of Al disk were conducted. In each process, capacitances and resistances of the disk measured by ac-impedance analyzer were compared to find its optimum treatment condition. Also, the surface morphology of treated disks were observed and compared by SEM. After the second etching, the Al disk was anodized at 365V to make an anode of hybrid supercapacitor that can be operated at 300V, Capacitance and resistance of the anodized Al disk electrode was compared with those of commercialized conventional aluminum electrolytic capacitor at different frequencies.

Electrochemical Characteristics of Carbon/Carbon Hybrid Capacitor and Li-ion Battery/Hybrid Capacitor Combination (Carbon계 Hybrid Capacitor의 전기 화학적 기술 및 Li-ion Battery의 혼성 동력원 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.597-598
    • /
    • 2005
  • Recently, the performance of portable electric equipment can often improved by a Li-ion battery assisted by a supercapacitor. A supercapacitor can provide high power density as well as a low resistance in the hybrid system. In this study, we have prepared, as the pluse power souce, a commercially supplied Li-ion battery with a capacity of 700mAh and AC resistivity of $60m\Omega$ at 1kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected battery/hybrid capacitor source. The nonaqueous asymmetric hybrid capacitor, the stacks of 10 pairs of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The hybrid capacitor, which was charged and discharged at a constant current at $0.25mA/cm^2$ between 3 and 4.3V, has exhibited the capacitance of 100F. And the equivalent series resistance was $32m\Omega$ at 1kHz. By combining a Li-ion battery and a hybrid capacitor, the pulse performance of battery can be improved 23% in run time under a pulse discharge of 7C-rate.

  • PDF

A Modularized Equalizer for Supercapacitor Strings in Hybrid Energy Storage Systems

  • Gao, Zhigang;Jiang, Fenlin
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1469-1482
    • /
    • 2016
  • In hybrid energy storage systems, supercapacitors are usually connected in series to meet the required voltage levels. Equalizers are effective in prolonging the life of hybrid energy storage systems because they eliminate the voltage imbalance on cells. This study proposes a modularized equalizer, which is based on a combination of a half-bridge inverter, an inductor, and two auxiliary capacitors. The proposed equalizer inherits the advantages of inductor-based equalization systems, but it also offers unique merits, such as low switching losses and an easy-to-use control algorithm. The zero-voltage switching scheme is analyzed, and the power model is established. A fixed-frequency operation strategy is proposed to simplify the control and lower the cost. The switching patterns and conditions for zero-voltage switching are discussed. Simulation results based on PSIM are presented to verify the validity of the proposed equalizer. An equalization test for two supercapacitor cells is performed. An experimental hybrid energy storage system, which consists of batteries and supercapacitors, is established to verify the performance of the proposed equalizer. The analysis, simulation results, and experimental results are in good agreement, thus indicating that the circuit is practical.