• Title/Summary/Keyword: Hybrid sheet

Search Result 144, Processing Time 0.023 seconds

Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • 윤정환;정관수;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

Spring-back prediction for sheet metal forming process using hybrid membrane/shell method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • F. Pourboghrat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF

Effect of Heat Treatment History in Fabrication of Hybrid Center Pillar on Tensile Strength of 7075 Aluminum Alloy Sheet (하이브리드 센터필러 제조 시 열처리 이력이 7075 알루미늄 합금 판재의 인장강도에 미치는 영향)

  • Yoo, D.;Kim, J.H.;Park, S.;Jang, H.K.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.61-68
    • /
    • 2021
  • As part of efforts to reduce the weight of automotive body-in-white, a hybrid center pillar with high strength 7075 aluminum alloy (AA7075) sheet and carbon fiber reinforced plastic (CFRP) has been recently studied. In the fabrication of the AA7075-CFRP hybrid center pillar, the AA7075 sheet might go through heating-forming-in-die quenching (HFQ), artificial aging, hybridizing, and then paint baking processes. In this study, we investigate the effects of the heat treatment history associated with each process on the tensile strength of the AA7075 sheet. Typical heat treatment conditions are HFQ for 20 minutes at 480℃ and then cooling down with die, artificial aging of T6 temper for 24 hours at 120℃, hybridizing for 10 minutes at 150℃, and paint baking for 20 minutes at 180℃. The tensile strength of the AA7075 sheet is continuously increased by a series of heat treatments of hybridizing and paint baking and is expected to have yield stress above 500MPa without artificial aging of T6 temper.

Performance Measurement of The Hybrid Sheet with Dual Function of Electromagnetic-Shielding and Heat-Dissipating (전자파차폐 및 방열 기능을 가지는 하이브리드시트 성능측정)

  • Ahn, Sung-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.530-536
    • /
    • 2021
  • This paper presents the performance measurement results of a hybrid sheet with both shielding and heat dissipation functions developed by laminating copper mesh sheets and natural graphite sheets, which are used widely as electromagnetic shielding and heat-dissipating materials in electronic devices, without a pressure-sensitive adhesive (PSA). The results were compared by measuring the vertical and horizontal thermal conductivity with two other products to confirm the heat dissipation performance. A radiation emission test confirmed the electromagnetic shielding performance using a 3m electromagnetic anechoic chamber according to the CISPR 11 standard. In the case of vertical thermal conductivity, the proposed hybrid sheet was approximately 8.63 times higher than that of an aluminum sheet with heat dissipation coating and 18.7 times higher than that of a copper sheet laminated with artificial graphite with PSA. The proposed hybrid sheet was approximately 0.64 times that of the sheet, and approximately 1.76 times that of the heat-dissipated aluminum sheet in case of horizontal thermal conductivity. Measurements after applying each sheet in the same heat source revealed the proposed hybrid sheet to have the best heat dissipation performance. The radiation emission test showed that significantly radiation noise had been removed.

Characteristics of Hybrid Protective Materials with CNT Sheet According to Binder Type

  • Jihyun Kwon;Euisang Yoo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.197-204
    • /
    • 2022
  • Recently, the demand has increased for protective clothing materials capable of shielding the wearer from bullets, fragment bullets, knives, and swords. It is therefore necessary to develop light and soft protective clothing materials with excellent wearability and mobility. To this end, research is being conducted on hybrid design methods for various highly functional materials, such as carbon nanotube (CNT) sheets, which are well known for their low weight and excellent strength. In this study, a hybrid protective material using CNT sheets was developed and its performance was evaluated. The material design incorporated a bonding method that used a binder for interlayer combination between the CNT sheets. Four types of binders were selected according to their characteristics and impregnated within CNT sheets, followed by further combination with aramid fabric to produce the hybrid protective material. After applying the binder, the tensile strength increased significantly, especially with the phenoxy binder, which has rigid characteristics. However, as the molecular weight of the phenoxy binder increased, the adhesive force and strength decreased. On the other hand, when a 25% lightweight-design and high-molecular-weight phenoxy binder were applied, the backface signature (BFS) decreased by 6.2 mm. When the CNT sheet was placed in the middle of the aramid fabric, the BFS was the lowest. In a stab resistance test, the penetration depth was the largest when the CNT sheet was in the middle layer. As the binder was applied, the stab resistance improvement against the P1 blade was most effective.

Fabrication of Graphene/Silver Nanowire Hybrid Electrodes via Transfer Printing of Graphene (그래핀 트랜스퍼 프린팅 공정을 이용한 그래핀/은 나노와이어 하이브리드 전극 제작)

  • Ha, Bonhee;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.572-576
    • /
    • 2017
  • A hybrid transparent electrode was fabricated with graphene and silver nanowires (Ag NWs). Three different processes were used to fabricate the hybrid electrode. Measurements of the sheet resistances, transmittances, and surface roughnesses of the hybrid electrodes were used to identify the optimal fabrication process. The surface roughness of the hybrid electrodes with Ag NWs embedded in a transparent polymer matrix was significantly lower than that of the other hybrid electrodes. A hybrid electrode fabricated by transferring graphene onto Ag NWs after spin-coating the Ag NWs onto the substrate showed the lowest sheet resistance. The transmittance of the hybrid electrodes was comparable to that of Ag NW electrodes.

Self-diagnosis property of strengthened concrete by rib of hybrid FRP and carbon fiber sheet (하이브리드FRP 탄소계 리브 및 탄소섬유시트 보강 콘크리트의 자가진단 기능 검토)

  • Park, Seok-Kyun;Kim, Dae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.358-361
    • /
    • 2006
  • For giving self-diagnosing capability, a method based on monitoring the changes in the electrical resistance of carbon materials in strengthened concrete has been tested. Then after examining change in the value of electrical resistance of carbon materials used as a rib of CFGFRP or a sheet of carbon fiber before and after the occurrence of cracks and fracture in hybrid FRP or carbon fiber sheet strengthened concrete at each flexural weight-stage, the correlations of each factors were analyzed.

  • PDF

Hybrid Welding Process for Sheet Metal and Narrow Gap Fill Pass (하이브리드 용접방식을 이용한 박판 및 후판용접공정)

  • Choi, Hae-Woon;Shin, Hyun-Myung;Im, Moon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.978-983
    • /
    • 2008
  • An application of innovative laser+GMA hybrid welding process is presented for reducing bead humping defects in high speed welding and increasing side wall fusion in narrow groove welding without torch or wire oscillation. In this hybrid process, the laser heat input is applied adjacent to the weld pool at a relatively low power density to produce a wider, flatter weld bead. In bead on plate in sheet metal gauges, the hybrid process was able to produce hump-free welds from 70ipm (${\sim}1780mm/min$) to over 150ipm (${\sim}3810mm/min$) of the travel speed compared to the un-assisted GMAW process. A square-butt joint in 15mm A572 Gr50 steel welds was investigated. A square butt joint with a gap of 3.2mm was filled with 6 passes. Liquid Nitrogen calorimetry and innovative $CO_2$ laser reflective optics were also developed to demonstrate the concept of hybrid welding.

The Effect of PEDOT:PSS Thickness on the Characteristics of Organic-Inorganic Hybrid Solar Cells (PEDOT:PSS의 두께가 유무기 하이브리드 태양전지 성능에 미치는 영향)

  • Kim, Souk Yoon;Han, Joo Won;Oh, Joon-Ho;Kim, Yong Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.61-64
    • /
    • 2019
  • In this study, we investigate organic-inorganic hybrid solar cells with a very simple three-layer structure (Al/n-Si/PEDOT:PSS). The performance of hybrid solar cells is optimized by controlling the sheet resistance and optical transmittance of the PEDOT:PSS layers. As the thickness of the PEDOT:PSS layer decreases, the optical absorption of the n-Si increases, which greatly improves the short-circuit current density ($J_{SC}$) of devices, but the increase in sheet resistance leads to a decrease in the open-circuit voltage ($V_{OC}$) and the fill factor (FF). The solar cell with the 180-nm thick PEDOT:PSS layer shows a highest efficiency of 8.45% ($V_{OC}$: 0.435 V, $J_{SC}$: $33.7mA/cm^2$, FF: 57.5%). Considering these results, it is expected that the optimizing process for the sheet resistance and transmittance of the PEDOT:PSS layer is essential for producing high-efficiency organic-inorganic hybrid solar cells and will serve as an important basis for achieving low-cost, high-efficiency solar cells.

APPLYING LASER-ARC HYBRID WELDING TECHNOLOGY FOR LAND PIPELINES

  • Booth, G-S;Howse, D-S;Woloszyn, A-C;Howard, R-D
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.169-175
    • /
    • 2002
  • World demand for natural gas has generated the need for many new land transmission pipelines to be installed in the next decade or so. Although mechanized gas metal arc welding is well developed, there are opportunities for cost savings by using alternative welding processes. Hybrid Nd:YAG laser - gas metal arc welding enables fibre optic delivery of the laser energy to a robotic welding head to be combined with the addition of extra energy and a consumable to produce good quality, deep penetration welds in a single pass. The present paper describes initial procedure development to optimize the laser and gas metal arc welding parameters for making joints in pipeline steel. Satisfactory joint quality was obtained and it is intended to develop the process to prototype field trials.

  • PDF