본 논문에서는 비정형, 대용량의 비디오데이터의 특징기반 검색과 주석기반 검색을 통합하여 다양한 사용자의 의미검색을 지원하고, 유사성 질의를 지원하는 통합비디오정보시스템(Hybrid Video Information System : HVIS)을 제안한다. HVIS는 메타데이터 모델링을 위해 한편의 비디오를 비디오 다큐먼트, 시퀸스, 장면, 객체로 나누고 물리적인 비디오스트림을 위한 원시데이터계층(raw_data layer)과 주석기반 검색, 특징기반 검색, 유사성 검색을 지원하기 위한 메타데이터계층(meta_data layer)의 두 개의 계층을 가진 통합 계층지향 메타데이터모델(Two layered Hybrid Object-oriented Metadata Model : THOMM)과 이 모델을 기반으로 주석기반 질의, 특징기반 질의, 유사질의가 가능한 비디오질의언어 (Video Query Language)와 질의를 처리하기 위한 비디오질의처리기 (Video Query Processor : VQP)와 질의처리알고리즘을 제안한다. 특히 유사한 장면, 객체를 찾는 유사질의시 사용자의 관심을 고려한 유사성 정도를 나타내는 식을 제시한다. 제안된 시스템은 Visual C++, ActiveX와 ORACLE를 이용하여 구현되었다.
본 연구에서는 이미지 인지유형 및 질의방식에 따른 검색방법의 효율성을 분석하기 위해 32명의 대학생들이 구글 이미지 검색시스템을 이용하여 검색실험을 실시하였다. 이미지 인지유형은 구체적(specific), 일반적(generic), 추상적(abstract) 유형으로 구분하였으며, 각 유형별 이미지를 텍스트검색, 예제에 따른 검색(QBE: Query by example), 하이브리드검색 등 3가지 질의방식으로 구분하여 실험을 실시하였다. 독립변수는 이미지 인지유형 및 질의방식이며 종속변수는 검색된 적합한 이미지의 수이다. 데이터 분석은 일원배치 분산분석(One-way ANOVA)과 이원배치분석(Two way ANOVA)을 이용하여 검증하였다. 분석결과로는 구체적 이미지와 일반적 이미지 인지유형에서는 텍스트 및 하이브리드 방식이 검색효율성이 높게 나타났고 추상적 이미지 인지유형에서는 QBE이 검색효율성이 높은 것으로 나타났다. 본 연구 결과는 이미지 검색에서 검색효율성을 높이기 위한 방안을 마련하는데 기초자료로 활용될 수 있을 것이다.
최근 UCC를 중심으로 동영상 데이터에 대해 사람들의 관심이 증가하고 있다. 따라서 동영상 데이터의 내용-기반 검색을 지원하는 효율적인 색인 기법이 요구된다. 그러나 Hybrid Spill-Tree를 제외한 대부분의 색인 기법들은 대용량의 고차원 데이터를 다루는데 비효율적이다. 본 논문에서는 동영상 데이터의 내용-기반 검색을 지원하기 위한 효율적인 고차원 색인 기법을 제안한다. 제안하는 고차원 색인 기법은 기존 Hybrid Spill-Tree을 기반으로 새롭게 제안하는 클러스터링 방법과 시그니쳐를 이용한 데이터 저장 방법을 결합하여 확장된 색인 기법이다. 또한 제안하는 시그니쳐-기반 고차원 색인 기법이 기존 M-Tree 및 Hybrid Spill-Tree에 비해 성능이 우수함을 보인다.
본 논문은 높은 데이터 상환율 및 저장된 데이터의 프라이버시를 보장함과 동시에 데이터 전송시간을 최소화하는 클라우드 스토리지와 P2P 스토리지를 결합한 파운틴 코드 기반의 하이브리드 P2P 클라우드 스토리지 시스템을 제안한다. 사용자는 저장 공간의 효율성 및 자신의 데이터 프라이버시를 보장하기 위해 저장하고자 하는 데이터에 대해 파운틴 코드 기반의 인코딩을 시행한 후 인코딩 된 데이터를 분할하여 전송한다. 또한, 제안하는 알고리즘은 각 피어의 생존 확률을 고려하여 데이터를 저장함으로써 사용자의 데이터 상환을 보장한다. 실험 결과는 제안한 알고리즘이 다양한 시스템 안정도에서 사용자의 전송시간을 줄일 수 있음을 보인다.
In ubiquitous environment, information retrieval using collaborative filtering is a popular technique for reducing information overload. Collaborative filtering systems can produce personal recommendations by computing the similarity between your preference and the one of other people. We integrate the collaboration filtering method and context-aware information retrieval method. The proposed method enables to find some relevant information to specific user's contexts. It aims to makes more effective information retrieval to the users. The proposed method is conceptually comprised of two main tasks. The first task is to tag context tags by automatic tagging technique. The second task is to recommend items for each user's contexts integrating collaborative filtering and information retrieval. We describe a new integration method algorithm and then present a u-commerce application prototype.
This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.
본 논문은 골프 동영상에 포함된 오디오 정보로부터 검출된 이벤트 사운드 구간과 골프 선수이름이 포함된 음성구간을 결합하여 선수별 이벤트 구간을 검색하는 방식을 제안한다. 전체적인 시스템은 동영상으로부터 분할된 오디오 스트림으로부터 잡음제거, 오디오 구간분할, 음성 인식 등의 과정을 통한 자동색인 모듈과 사용자가 텍스트로 입력한 선수 이름을 발음열로 변환하고, 색인된 데이터베이스에서 질의된 선수 이름과 상응하는 음성구간과 연결되는 이벤트 구간을 찾아주는 검색 모듈로 구성된다. 선수이름 검색을 위해서 본 논문에서는 음소 기반, 단어 기반, 단어와 음소를 결합한 하이브리드 방식을 적용한 선수별 이벤트 구간 검색결과를 비교하였다.
During the past decades automated storage/retrieval (AS/R) systems have been dominantly implemented in most industrial fields due to their handling efficiency and high utilization of storage space. Such AS/R systems consist of several modules each of which contains two racks and a S/R machine. This paper proposes a design of the hybrid AS/R module which can be adopted without too much initial expenditure by most of small-and-medium sized companies. The hybrid module consists of an AS/R module on the upper floor and a traditional warehouse module on the lower floor. For the AS/R module, analytical expressions of the expected travel times for the S/R machine and the elevator per operation are derived. The expected travel times represent the performance of the module and thus can be used for its economic design.
This study is intended to compare the effectiveness of the neural network inductive learning model with a vector space model in information retrieval. As a result, searches responding to incomplete queries in the neural network inductive learning model produced a higher precision and recall as compared with searches responding to complete queries in the vector space model. The results show that the hybrid methodology of integrating an inductive learning technique with the neural network model can help solve information retrieval problems that are the results of inconsistent indexing and incomplete queries--problems that have plagued information retrieval effectiveness.
최근 웹 환경이 대중화되고 개방됨에 따라 웹은 단순한 정보 획득의 공간이 아닌, 의견 표출과 교환의 장이 되어 가고 있으며, 이에 따라 웹 상에서 표출된 특정 주제에 대한 사람들의 의견을 자동으로 검색하기 위한 기술 개발의 필요성이 점차 증대되고 있다. 이러한 의견 문서 검색 문제는 사용자 질의와 문서간의 적합성만을 고려하는 일반적인 정보검색 방법으로는 해결하기 어려우며, 문서 내 의견 포함 여부 분석을 수행할 수 있는 더욱 진보된 시스템을 필요로 한다. 본 논문에서는 기존 검색 시스템의 구조 하에서, 의견 문서 검색을 효과적으로 수행할 수 있는 시스템을 제안한다. 의견 검색을 수행하기 위해 문서내 의견 분석 방법에 대해 기존의 사전 기반 방식과 기계학습 기반 방식을 결합한 새로운 혼합 방식을 제안하고, 실험을 통하여 검색 성능을 개선하는 효과가 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.