• Title/Summary/Keyword: Hybrid railway vehicle

Search Result 27, Processing Time 0.059 seconds

Design and Control Strategy of Fuel Cell Hybrid Power System for Light Electric Railway Vehicles (경전철용 연료전지 하이브리드 동력시스템 설계 및 제어)

  • Kim, Young-Ryul;Park, Young-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.772-777
    • /
    • 2009
  • The development of fuel cell hybrid power system, as a next generation power system to promote clean energy which will mitigate the continued global warming, has demonstratd a significant progress in passenger vehicle applications. Also, in case of railway vehicles in non-electrified railway lines, the adoption of fuel cell hybrid power system is being studied among well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration. The simulation results demonstrate the viability of the proposed power system design and its control strategy.

Performance Evaluation for Application of Large Capacity LPB Pack Equipped to Series Hybrid Articulated Vehicle (직렬형 하이브리드 굴절차량용 대용량 LPB 팩의 적용 및 성능 평가)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.930-937
    • /
    • 2012
  • Newly developed Series hybrid low-floor articulated vehicle which can meet both road and railway running conditions. It has the rated driving speed of 80 km/h and three driving modes with hybrid(engine+battery) driving mode, engine driving mode, battery driving mode. The battery driving mode requires the several 10 km running without additional charging operation. The vehicle has been equipped with LPB (lithium polymer battery) pack for the series hybrid propulsion system. LPB pack consists of 168 cells (3.7 V in a cell, 80 Ah) in series, DC Circuit breaker, mechanical rack, BMS (battery management system). This paper has shown the design process of LPB pack and application to the vehicle. Driving results in the road was successful to be satisfied with the requirement of the series hybrid vehicle.

Fuel Cell Hybrid Power System for Railway Vehicles (철도차량용 연료전지 하이브리드 동력시스템)

  • Kim, Young-Ryul;Park, Young-Ho;Kim, Young-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.855-861
    • /
    • 2008
  • The development of fuel cell hybrid power system, as a next generation power system for solving the global warming, has been being made actively progress around passenger vehicles. Also, in case of railway vehicles in unelectrified railway line, the adoption of fuel cell hybrid power system is being studied around well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system in order to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration and provides simulation results to evaluate their validity.

  • PDF

Comparison and Analysis of Boost Converter Topologies for the DC/DC Converter in Hydrogen Fuel Cell Hybrid Railway Vehicle (수소연료전지 하이브리드 철도차량용 DC/DC 컨버터를 위한 부스트 컨버터 토폴로지 비교 및 분석)

  • Kang, Dong-Hun;Lee, Il-Oun;Lee, Woo-Seok;Yun, Duk-Hyeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.269-278
    • /
    • 2020
  • In this paper, two types of DC/DC converters in a hydrogen fuel cell hybrid railway vehicle system, which serve to charge high-voltage battery and supply power to an inverter for driving a driving motor, were compared and analyzed. A two-level interleaving boost converter and a three-level boost converter were compared and analyzed, and a theoretical design method was proposed to have an efficiency characteristic of over 95%. In addition, a digital controller design method considering the digital phase delay component of DSP (TMS320F28335) is presented. Finally, the validity of the theoretical design of the converter with 20kW power was verified through static and dynamic experiments respectively.

Global warming effect Comparison of each material for railway vehicle (철도차량 차체재료별 온실가스발생량 비교)

  • Lee, Cheul-Kyu;Kim, Yong-Ki;Phirada, Pruitichaiwiboon
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.219-222
    • /
    • 2009
  • Green ocean is one of the main issues internationally. Most governments are leading the role in boosting the economy through creating new green market and establishing system of coping with increasing international environmental regulation. Green ocean, which is a solution for the environmental issue of global warming, is applied throughout the industry. Domestic transportation industry including railway is also developing technology for creating green ocean. Transportation must decrease energy consumption at running stages because it shows high environmental loads expecially on using stages during its life cycle. Therefore, There are some tries for developing technologies; new engine through alternative energies, hybrid and lightweight. Railway transportation can not be exception. it is intended for this paper to suggest the direction of manufacturing environmentally friendly railway vehicle through the global warming effect evaluation of several materials being applied to vehicle and comparison of the results.

  • PDF

Main Systems Composing Hybrid Tram (하이브리드 트램의 시스템 구성)

  • Chang, Se-Ky;Lee, Kang-Won;Bae, Chang-Han
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.730-734
    • /
    • 2007
  • National projects on renewable energy and new energy are driven more actively than ever in many countries for the exhaustion of fossil fuel energy from the turn of the century. Such activities began to spread out in railway industry with centering around west European countries. Electric energy is generated on the hybrid vehicle itself, which contributes to reduction of the cost for construction of the infrastructure required for the supply of electric power. Hybrid tram is mainly composed of propulsion system to control electric energy, automatic guidance system to control steering and operation, and central vehicle unit to control and monitor major electronic devices. Generation and supply of electric power are made by the combination of engine generator and battery, or fuel cell and super capacitor.

  • PDF

Design Specifications of Car body and Interiors for Bimodal Tram Vehicle (바이모달 트램 차량용 차체 및 실내의장의 설계사양)

  • Kim, Yeon-Su;Lim, Song-Gyu;Mok, Jai-Kyun;Park, Tae-Young;Cho, Se-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.975-979
    • /
    • 2008
  • Since tram has the advantages to reduce construction cost of infrastructure, to improve accessibility of passengers, and to offer visual pleasures, nowadays, it is one of light rails attracting public attention. Tram can be classified into two groups, one is a conventional steel-wheeled type, and the other is a rubber-tired type (bi-modal tram). The bi-modal tram propelled by the serial CNG hybrid propulsion unit has been developing since 2003 in Korea, which can realize both scheduled operation of railway and route flexibility of bus. Because the bimodal will be operated on both railway mode and bus mode, however, specific criteria and regulations for its design, certification, construction, operation and maintenance have not been determined definitely yet. In consideration of mobility enhancement for the old and the handicapped, motor vehicle safety standard and urban transit (railway vehicle) safety standard, several design specifications were proposed for car body and interiors of the bimodal tram vehicle. The design specifications proposed in this paper can be expected to promote passengers' comfort and safety, operation efficiency of the bimodal tram.

  • PDF

The Feasibility Study on Small-scale Prototype Electric Railway Vehicle Application using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량 적용 선행연구)

  • Jung, No-Geon;Chang, Chin-Young;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.184-190
    • /
    • 2014
  • Fuel cell power system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. In recent years, railway field as well as mobile fuel cell power system is being studying actively with development of hydrogen storage technologies. This paper presents the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. it is confirmed that proposed fuelcell-battery hybrid system shows good response characteristic about speed and torque based on design of parameter on system. Also as results of response for proposed system modeling, it show that powering mode and braking mode of system is controlled by switching devices of converters.

The Modeling of Hybrid Railway Vehicle Power System Using Fuel Cell and IPT System (연료전지 및 유도급전 시스템을 이용한 하이브리드 철도차량 시스템 모델링)

  • Han, K.H.;Jang, H.Y.;Kwon, S.Y.;Park, H.J.;Lee, B.Y.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1038-1039
    • /
    • 2008
  • This paper proposes a base models of Hybrid railway vehicle power system. A powered system with fuel cell is regarded as a high current and low voltage source. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the base models of power conversion system with a PEM fuel cell/IPT system for hybrid powered system that includes the PEM fuel cell stack, DC/DC converter are developed. Concept of bidirectional converter for super capacitor charging system is presented.

  • PDF

Flow Analysis Using 1 and 3 Dimensional Hybrid Mesh For Ultra-High Speed Vehicle Inside A Long Distance Tunnel (1-3차원 혼합격자를 이용한 장거리 터널 내 고속 운송체 유동해석)

  • Kim, Tae-Kyung;Choi, Joong-Keun;Kwon, Hyeok-Bin;Kim, Kyu-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.107-118
    • /
    • 2011
  • This paper performs flow analysis of ultra-high speed vehicle inside the long distance tunnel. One and three dimensional hybrid mesh was used for describing moving motion and flow analysis of an vehicle inside a long distance tunnel which over 20 km. Flow analysis and aerodynamic drag measuring were performed by three dimensional mesh: around vehicle, and pressure waves of a tunnel was measured by one dimensional mesh: the other region where rare changing of flow pattern.

  • PDF