• Title/Summary/Keyword: Hybrid propulsion

Search Result 283, Processing Time 0.022 seconds

Study on Equivalent Consumption Minimization Strategy Application in PTI-PTO Mode of Diesel-Electric Hybrid Propulsion System for Ships

  • Lee, Dae-Hong;Kim, Jong-Su;Yoon, Kyoung-Kuk;Hur, Jae-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.3
    • /
    • pp.451-458
    • /
    • 2022
  • In Korea, five major ports have been designated as sulfur oxide emission control areas to reduce air pollutant emissions, in accordance with Article 10 of the "Special Act on Port Air Quality" and Article 32 of the "Ship Pollution Prevention Regulations". As regulations against vessel-originated air pollutants (such as PM, CO2, NOx, and SOx) have been strengthened, the Ministry of Oceans and Fisheries(MOF) enacted rules that newly built public ships should adopt eco-friendly propulsion systems. However, particularly in diesel-electric hybrid propulsion systems,the demand for precise control schemes continues to grow as the fuel saving rate significantly varies depending on the control strategy applied. The conventional Power Take In-Power Take Off(PTI - PTO) mode control adopts a rule-based strategy, but this strategy is applied only in the low-load range and PTI mode; thus, an additional method is required to determine the optimal fuel consumption point. The proposed control method is designed to optimize fuel consumption by applying the equivalent consumption minimization strategy(ECMS) to the PTI - PTO mode by considering the characteristics of the specific fuel oil consumption(SFOC) of the engine in a diesel-electric hybrid propulsion system. To apply this method, a specific fishing vessel model operating on the Korean coast was selected to simulate the load operation environment of the ship. In this study, a 10.2% reduction was achieved in the MATLAB/SimDrive and SimElectric simulation by comparing the fuel consumption and CO2 emissions of the ship to which the conventional rule-based strategy was applied and that to which the ECMS was applied.

A Study on Optimization of Propulsion Systems for Series Hybrid Electric Vehicles Considering Mission Equipments (임무장비를 고려한 직렬형 하이브리드 차량의 추진시스템 최적화 연구)

  • Jang, Myeong-Eon;Kim, Sang-Man;Han, Kyu-Hong;Yeo, Seung-Tai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.225-232
    • /
    • 2013
  • In this paper, the study was conducted on the subject of the hybrid electric vehicles used by the military, and optimized the propulsion system for fuel economy considering energy supply to the mission equipments. For the analysis of the vehicles, a method based on the geometry and some assumptions was applied with basic vehicle dynamics. The sources of energy supply in the military hybrid electric vehicles are an engine, a battery and an ultra-capacitor. The optimal operation point among an engine, a battery and an ultra-capacitor can be found by minimizing energy consumption of driving power train and mission equipments. In the study, it was possible to find the optimal propulsion system by comparing fuel efficiency of the vehicles during the driving cycle.

A Study on Regression Rate in End-Burning Hybrid rocket with Variation of Swirl Intensity (End-Burning 하이브리드 로켓의 스월 강도 변화에 따른 연료 후퇴율에 관한 연구)

  • Choi, Won-Jun;Woo, Kyoung-Jin;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.70-75
    • /
    • 2012
  • In this paper, the regression rate of the End-Burning Hybrid Rocket with variation of swirl intensity was investigated experimentally with the variation of fuel diameter, injector shape and angle. When fuel grain diameter is large, fuel mass flow rate increases. And the injector diameter increase, fuel regression rate decrease. The impinging effect of oxidizer flow on fuel surface for fuel combustion efficiency is stronger than swril effect in this End-burning propulsion system. The relation between the regression rate, oxidizer mass flux and swirl intensity was obtained.

  • PDF

A study on resistance & propulsion performance of a 9.77ton hybrid propulsion fishing boat (9.77톤 전기복합 추진어선 저항 추진성능에 관한 연구)

  • Young-Jae Jeong;Yeun-Hee Song;Hye-Young Kang;Kyoung-Wan Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.114-115
    • /
    • 2023
  • Research on eco-friendly ships is being actively conducted due to the strengthening of environmental regulations in the shipping sector by the International Maritime Organization (IMO). However, most studies are on large ships, and research on small ships is insufficient. Since most fishermen operate small boats, research on eco-friendly fuel vessels is necessary. This study performed resistance performance analysis, model tests, and POW tests to develop a hybrid electric propulsion ship, and compared and verified the CFD and model test results.

  • PDF

Preliminary Analysis of Power Systems for 1-ton class Electric Powered PAV (전기추진 1톤급 Personal Air Vehicle의 동력시스템 예비 분석)

  • Yun, Dong-Ik;Huh, Hwan-Il;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2010
  • In this paper, we present some results of technical surveys, power analyses, and weight estimation on electric propulsion systems for 1-ton class Personal Air Vehicles(PAV) applications. When hybrid electric propulsion is adopted, its power performance using fuel cells and batteries in inferior to that of internal combustion engines. However, hybrid electric propulsion systems may replace IC engines when energy density and power density reach 0.75 kW$^*$hr/kg and 2.5 kW/kg, respectively.

Development Technology Trends of Propulsion System in Unmanned Air Vehicles (무인기 추진시스템 개발 기술 동향)

  • Nak-Gon Baek;Juhyun Im
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • The propulsion technology used in unmanned Aerial Vehicles (UAVs)—which represent one of the most important development directions in aviation—is significantly related to their flight performance. This review paper discusses the different types of propulsion technologies used in unmanned aerial vehicles, namely the internal combustion engine (reciprocating, rotary, and gas turbine engines), the hybrid system, and the pure electric system. In particular, this paper presents and discusses the classification, working principles, characteristics, and critical technologies of these types of propulsion systems. These findings are expected to be helpful in establishing a development framework, comprehensive views, and multiple comparisons of future UAV propulsion systems.

Design of Hybrid Rocket (Altitude 15km) Using Liquid Oxidizer ${N_2}O$ (${N_2}O$ 액체산화제를 사용한 고도 15km급 하이브리드 로켓 설계)

  • Heo, Jun-Young;Cho, Min-Gyung;Kim, Jong-Chan;Kim, Soo-Jong;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.97-100
    • /
    • 2008
  • A hybrid sounding rocket carrying about 10kg payload reaching up to 15km altitude has been designed. The commercial seamless aluminium tube and liquid ${N_2}O$ without pressurization devices were chosen as rocket motor case and oxidizer supply system respectively. A hybrid rocket engine performing required propulsion impulse is designed with time dependent internal ballistic scheme. Engine performance, aerodynamic characteristics, and trajectory were predicted by a integral technique of internal ballistics and external ballistics. The design results were evaluated by comparison with previous experimental data, technical reports, and literatures.

  • PDF

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2002
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number $\kappa-\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.

The combustion characteristic of GOX flow change in Hybrid Rocket (하이브리드 로켓의 GOX 유동 변화에 따른 연소 특성)

  • Koo, Won-Mo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.229-232
    • /
    • 2007
  • 하이브리드 로켓의 연소율을 높이기 위해 유동 특성을 바꾸면서 실험을 수행하였고 연소된 연료 내부 표면이 고르지 못한 것을 볼 수 있었다. 그 원인을 밝히기 위해 연료 표면을 관찰하고 유동가시화 실험을 한 결과 거친 연료 표면의 원인이 검댕 때문이고 이것은 국부적인 산화제 부족현상 때문에 발생하게 되었다는 것을 알 수 있었다. 또 연소 시 연료 전체에 발생하는 검댕의 특성은 이 현상이 하이브리드 로켓만의 독특한 특징인 분출효과 때문이라고 예측할 수 있게 해주었다.

  • PDF