• 제목/요약/키워드: Hybrid power system

검색결과 1,312건 처리시간 0.039초

하이브리드시스템 모델링 기반 발전기 전력시스템 안정화장치 정수선정 기법 (Parameter Selection Method for Power System Stabilizer of a Power Plant based on Hybrid System Modeling)

  • 백승묵
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.883-888
    • /
    • 2014
  • The paper describes the parameter tuning of power system stabilizer (PSS) for a power plant based on hybrid system modeling. The existing tuning method based on bode plot and root locus is well applied to keep power system stable. However, due to linearization of power system and an assumption that the parameter ratio of the lead-lag compensator in PSS is fixed, the results cannot guarantee the optimal performances to damp out low-frequency oscillation. Therefore, in this paper, hybrid system modeling, which has a DAIS (differential-algebraic-impusive-switched) structure, is applied to conduct nonlinear modeling for power system and find optimal parameter set of the PSS. The performances of the proposed method are carried out by time domain simulation with a single machine connected to infinite bus (SMIB) system.

가스터빈-연료전지 혼합형 고효율 발전시스템 (High Efficiency Gas Turbine-Fuel Cell Hybrid Power Generation System)

  • 이진근;양수석;손정락;송락현;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.347-353
    • /
    • 2001
  • A combined cycle, 'HYBRID', is emerging as a new power generation technology that is particularly suitable for the distributed power generation system, with high energy efficiency and low pollutant emission. Currently micro gas turbines and fuel cells are attracting a lot of attention to meet the future needs in the distributed power generation market. This hybrid system may have every advantages of both systems because a gas turbine is synergistically combined with a fuel cell into a unique combined cycle. The hybrid system is believed to become a leading runner in the distributed power generation market. This paper introduces a current plan associated with the development of the hybrid system which consists of a micro gas turbine and a solid-oxide fuel cell(SOFC).

  • PDF

연료전지궤도차량의 동력시스템 (Power System of Fuel Cell Tram)

  • 장세기;목재균;임태훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.320-325
    • /
    • 2005
  • Power of fuel cell tram is supplied by only fuel cell system or hybrid system of fuel cell and battery/super capacity. Fuel cell is operated by hydrogen, which is fed directly from hydrogen tank or by reforming gasoline or methanol into hydrogen. Power system is preferred with hybrid of fuel cell and battery/super capacity since it improves total energy efficiency through interaction of hybrid components and restores energy regenerated by braking. Also, power supply system by fuel cell hybrid should be designed to output optimum energy efficiency depending on driving mode of fuel cell tram.

  • PDF

정출력 조정을 위한 풍력-연료전지 하이브리드 시스템의 운영 기법 (Operation Scheme to Regulate Constant Active Power Output of Wind Turbine and Fuel-Cell Hybrid System)

  • 김윤성;문대성;원동준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1174-1175
    • /
    • 2008
  • A operation scheme to regulate the active power output of the hybrid system consisted of a doubly fed induction generator(DFIG) and a fuel-cell are presented. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. A fuel cell system can be individually operated and adjusted output power. In this paper, a fuel-cell is performed to regulate the active output power in comparison with the active power output of a DFIG. Based on PSCAD/EMTDC power system tools, we simulated a DFIG and a fuel cell and investigated about dynamics of the output power in hybrid system.

  • PDF

퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어 (Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics)

  • 정귀성;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석 (Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System)

  • 김슬기;전진홍;조창희;안종보
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

가스터빈/연료전지 혼합형 고효율 발전시스템 개발 (Development of High Efficiency Gas Turbine/Fuel Cell Hybrid Power Generation System)

  • 김재환;박부민;양수석;이대성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.243-247
    • /
    • 2005
  • This paper describes an on-going national R&D program for the development of a gas turbine/fuel cell hybrid power generation system and related R&D activities. The final goal of this program is to develop a 200kW-c1ass gas turbine/fuel cell hybrid power generation system and achieve high efficiency over $60\%$ (AC/LHV). In the first phase of the development, a sub-scaled 60kW-class hybrid system based on the 50kW-class microturbine and the 5kW SOFC will be developed for the purpose of concept proof of the hybrid system. Core components such as the microturbine and the SOFC system are being developed and parallel preparation for system integration is being carried out. Before the core components are assembled in the final system. operating characteristics of a hybrid system are investigated from a simulated system where a turbocharger (microturbine simulator) and a modified fuel cell burner test facility (fuel cell simulator) are employed. The 60kW demonstration unit will be built up and operated to provide the valuable information for the preparation of the final full scale 200kW hybrid system.

  • PDF

출력변동 저감 및 출력범위 예측 향상을 위한 풍력-연료전지 하이브리드 시스템의 운영방법 (Operation Scheme to Regulate the Active Power Output and to Improve the Forecasting of Output Range in Wind Turbine and Fuel-Cell Hybrid System)

  • 김윤성;문대성;원동준
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.531-538
    • /
    • 2009
  • The paper deals with an operation scheme to improve the forecasting of output range and to regulate the active power output of the hybrid system consisting of a doubly fed induction generator (DFIG) and a fuel-cell. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. The power fluctuation of a DFIG makes its operation difficult when a DFIG is connected to grid. A fuel cell system can be individually operated and adjusted output power, hence the wind turbine and fuel cell hybrid system can overcome power fluctuation by using a fuel-cell power control. In this paper, a fuel-cell is performed to regulate the active power output in comparison with the regulated active power output of a DFIG. And it also improves the forecasting of output range. Based on PSCAD/EMTDC tools, a DFIG and a proton exchange membrane fuel cell(PEMFC) is simulated and the dynamics of the output power in hybrid system are investigated.

새만금 부근 섬 지역에서 풍력-디젤 복합 전원 시스템의 경제 및 환경적 타당성에 관한 연구 (Economic and Environmental Feasibility on the Wind-Diesel Hybrid Power System in an Island near Seamangeum Area)

  • 서현수;장세명;김은일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.277-280
    • /
    • 2006
  • This paper deals with the possibility on the hybrid power system concerning wind energy at a really existing island, Sunyoo-do in the west sea near Seamangeum. In the present stage, Diesel system produces all the electrical power of the Island. However, in the new proposed system of Diesel and wind energy, an optimized guideline for drive from the economic analysis on this hybrid system is given by a mathematical and statistical modelling with a share software HOMER (hybrid optimization model for electric renewables). After a series of analysis it has been shown that the hybrid system can reduce the total expenses as well as air pollution.

  • PDF

Verification of Hybrid Real Time HVDC Simulator in Cheju-Haenam HVDC System

  • Yang Byeong-Mo;Kim Chan-Ki;Jung Gil-Jo;Moon Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.23-27
    • /
    • 2006
  • In this paper a Hybrid Real Time HVDC Simulator fur both operator Training and Researching in the Cheju-Haenam HVDC System is proposed and its performance is studied by means of RTDS (Real Time Digital Simulator), EMTDC (Electro-Magnetic Transients system for DC), PSS/E (Power System Simulator for Engineering), and experienced scenarios. The objective of this paper is to represent the strategy in development for KEPCO's hybrid HVDC simulator for the Cheju-Haenam HVDC system. This simulator consists of two DC stations, DC cables, external digital/analog controllers, monitoring systems and control desk for education, and AC networks. Its suitability for operator's education is tested during startup/shutdown and normal state operations. Dynamic performances of it are also verified.