• Title/Summary/Keyword: Hybrid polymer

Search Result 626, Processing Time 0.034 seconds

Preparation and Characterization of Silk Fibroin/Gelatin Hybrid Scaffolds (실크 피브로인/젤라틴 하이브리드 지지체의 제조 및 특성분석)

  • Kim, Hye-Lin;Hong, Min-Sung;Kim, Su-Jin;Jo, Han-Su;Yoo, Il-Sou;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.378-384
    • /
    • 2011
  • Silk fibroin is a biocompatible and slowly biodegradable natural polymer. This natural polymer has excellent mechanical properties, non-toxicity, and non-immunogenic properties and has been demonstrated to support tissue regeneration. Also, gelatin is a natural material derived from collagen by hydrolysis and has an almost identical composition as that of collagen. Silk fibroin/gelatin scaffolds have been fabricated by using the freeze-drying method. To establish the scaffold manufacturing condition for silk fibroin and gelatin, we made scaffolds with various compositions of gelatin, glutaldehyde and silk fibroin. The silk fibroin/gelatin scaffolds were characterized using SEM, DSC, and water absorption ability tests. The cellular proliferation was evaluated by WST assay. These results suggested that a scaffold containing 8% of gelatin, 1% of glutaldehyde and 0.3 g of silk fibroin provided suitable characterstics for cell adhesion and proliferation. In conclusion, the silk fibroin/gelatin scaffold may serve as a potential cell delivery vehicle and a structural basis for tissue engineering.

Behavior of Hybrid Stud under Compressive Load (복합스터드의 압축 좌굴 거동)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.609-619
    • /
    • 2004
  • An investigation was conducted on the activities around Europe in order to solve the problem of the thermal bridging of steel studs, which had caused a significant disadvantage. This study included the following: diminishing the contact area between the studs and the sheathing, lengthening the heat transfer route, replacing the steel web with a less conductive material, and placing foam insulation in locations where the thermal shorts are most critical. Although energy efficiency is usually the focus of such foreign cases because their stud application is mostly limited to low-rise residential buildings, both structural and thermal performance are taken into consideration in this study because these target middle-story buildings. A hybrid stud composed of steel and polymer was also developed. This hybrid stud, which is 150 SL in size, is made of a galvanized steel sheet (SGC58) and a glass fiber reinforced polymer (GFRP) withepoxy bonding. A total of 32 specimens were manufactured. Its parameters comprise two types of connection detail,s: the thickness of steel (1.0mm and 1.2mm) and of the GFRP (4mm-4ply and 6mm-6ply), and the ratio of the length to the depth (L/D = 3, 6, 9, 12). Steel stud specimens with the same conditions were compared to the hybrid stud. The test revealed that in the case of the steel specimen with a thickness of 1.0mm, the maximum load of hybrid studs increased an average of 1.62 times comparedto that of the steel stud. In the case of the steel specimen with a thickness of 1.2mm, on the other hand, the average increase was 1.46times. All specimens showed full composite action until the collapse.

Crystallization of Poly(vinylidene fluoride)-SiO2 Hybrid Composites Prepared by a Sol-gel Process

  • Cho, Jae Whan;Sul, Kyun Il
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.135-140
    • /
    • 2001
  • Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO$_2$ were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of $SiO_2$ networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-lR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the $SiO_2$ networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDF ${\gamma}$-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2$\theta$=$21^{\circ}$ due to PVDF crystallization, and Intensity increased grade-ally with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of $SiO_2$ networks. That is, $SiO_2$ content directly influenced preference and disturbance fur crystallization. In polymer-rich hybrids, $SiO_2$ networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum portent crystallinity of PVDF occurred at the content of 3.7 wt% $SiO_2$ and was higher than that of pure PVDF. However. beyond about 10 wt% $SiO_2$, the crystallization of PVDF was strongly confined.

  • PDF

BMP-2 Immoblized in BCP-Chitosan-Hyaluronic Acid Hybrid Scaffold for Bone Tissue Engineering

  • Nath, Subrata Deb;Abueva, Celine;Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.704-709
    • /
    • 2014
  • In this study, we fabricated a novel micro porous hybrid scaffold of biphasic calcium phosphate (BCP) and a polylectrolyte complex (PEC) of chitosan (CS) and hyaluronic acid (HA). The fabrication process included loading of CS-HA PEC in a bare BCP scaffold followed by lypophilization. SEM observation and porosimetry revealed that the scaffold was full of micro and macro pores with total porosity of more than 60 % and pore size in the range of $20{\sim}200{\mu}m$. The composite scaffold was mechanically stronger than the bare BCP scaffold and was significantly stronger than the CS-HA PEC polymer scaffold. Bone morphogenetic growth factor (BMP-2) was immobilized in CS-HA PEC in order to integrate the osteoinductive potentiality required for osteogenesis. The BCP frame, prepared by sponge replica, worked as a physical barrier that prolonged the BMP-2 release significantly. The preliminary biocompatibility data show improved biological performance of the BMP-2 immobilized hybrid scaffold in the presence of rabbit bone marrow stem cells (rBMSC).

Variation of Dielectric Constant with Various Particle Size and Packing Density on Inkjet Printed Hybrid $BaTiO_3$ Films

  • Lim, Jong-Woo;Kim, Ji-Hoon;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.271-271
    • /
    • 2010
  • $BaTiO_3$(BT) has high permittivity so that has been applied to dielectric and insulator materials in 3D system-level package integration. In order to achieve excellent performance of device, the BT layer should be highly dense. In this study, BT thick films were prepared by the inkjet printing method. And these films were cured at $280^{\circ}C$ after infiltration of polymer resin. As a result, we have successfully fabricated not only the inkjet-printed hybrid BT film but also metal-insulator-metal(MIM) capacitor without sintering process. Changes in the dielectric constant of BT hybrid film with particle size and packing density were investigated. The dielectric constant was increased with increasing packing density and particle size. Further, the BT hybrid film using two different size particles had even higher packing density and dielectric constant.

  • PDF

Analysis of Part Load Performance of a Hybrid PEMFC System (하이브리드형 고분자전해질 연료전지 시스템의 부분부하 성능해석)

  • Ji, Seung-Won;You, Byung-June;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.849-855
    • /
    • 2008
  • The paper addresses modeling and analysis of the part load performance of a hybrid fuel cell system integrating a polymer electrolyte membrane fuel cell(PEMFC) and a gas turbine(GT). The system is a pressurized one where the working pressure of the PEMFC is higher than the ambient pressure. In addition to the two major components, the system also includes auxiliary parts such as a steam reformer, a humidifier, and afterburner and so on. Based on design analysis, component off-design models are incorporated in the analysis program and part load operation is simulated. The mode for the part load operation of the PEMFC/GT hybrid system is a variable rotational speed operation. The operating characteristics and variations in the system efficiency and component performance parameters at part load are analyzed.

Development of Hybrid Membrane composed of Organic and Inorganic Polymers for the Desalination of Deep Ocean Water (I) (해양심층수담수화를 위한 유무기계 분리막 개발(1))

  • Kim H.J.;Jung D.H.;Hong Y.K.;Song K.H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.7-12
    • /
    • 2004
  • Desalination system of revers osmosis(RO) membrane has been proven to be the most economical not only for the desalination of water containing salts, but also for the concentration of solute. RO membranes were traditionally made of inorganic polymers such. as cellulose acetate(CA), Polyamide(PA). To retain more minerals in deep ocean water, a new hybrid membrane composed of tourmaline film as organic material onto inorganic layer of CA polymer in asymmetric structure was developed for RO membrane process. The performance tests were carried out in the permeability of pure water and the rejection of NaCl solution to evaluate the adaptability for DOW desalination. The results of these basic tests show possibility to apply the new hybrid RO membrane for the desalination with function control.

  • PDF

Synthesis of Polyurethane-polyacrylate Hybrid Emulsions (폴리우레탄-폴리아크릴레이트 하이브리드 에멀젼의 제조)

  • Kang, Sang Yong;Kim, Hyung Joong
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • Hybrid emulsions consisting of polyurethane and acrylic polymer were prepared by emulsion polymerization of acrylic monomers and polyurethane water dispersions (PUD) as an emulsifier. At first, cationic type of PUD was synthesized with IPDI, PTMG1000, MDEA, and acetic acid. Then, acrylic monomers, such as MMA and n-BA, were copolymerized with the PUD without adding further surfactant. The tensile properties and water resistance increased with increasing acrylic monomer ratio. The hybrid emulsions showed better properties than the emulsions simply blended with the PUD and the acrylic emulsions.

  • PDF

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

Synthesis and Characterization of Novel Conjugated Polymer with Thiophene and Benzimidazole

  • Song, Su-Hee;Park, Sung-Heum;Jin, Young-Eup;Kim, Il;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3045-3050
    • /
    • 2011
  • The synthesis of copolymers containing thiophene and benzimidazole unit by Stille polymerization is reported. The polymers with many unsubstituted thiophene units in the backbone have been reported to show low solubility, which has been a problem for spin-coating for the device fabrication. In dihexyl-2H-benzimidazole, the sulfur at 2-position of BT unit was replaced with dialkyl substituted carbon, while keeping the 1,2-quinoid form, to improve the solubility of the polymers. The PL emission spectra of the PHBIT1, PHBIT2 and PHBIT3 in chloroform solutions show maximum peaks at 500~561 nm. In thin films, maximum peaks of the PHBITs appeared at 529, 562 and 569 nm, respectively. The EL emission maxima of the PHBIT1 and PHBIT2 appear at around 588 and 576 nm, respectively. The current density and maximum luminescence of the LED with the configuration of ITO/PEDOT/ PHBIT2/Ca/Al are 552 mA/$cm^2$ and 46 cd/$m^2$, respectively.