Browse > Article

Preparation and Characterization of Silk Fibroin/Gelatin Hybrid Scaffolds  

Kim, Hye-Lin (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University)
Hong, Min-Sung (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University)
Kim, Su-Jin (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University)
Jo, Han-Su (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University)
Yoo, Il-Sou (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University)
Lee, Dong-Won (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University)
Khang, Gil-Son (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University)
Publication Information
Polymer(Korea) / v.35, no.5, 2011 , pp. 378-384 More about this Journal
Abstract
Silk fibroin is a biocompatible and slowly biodegradable natural polymer. This natural polymer has excellent mechanical properties, non-toxicity, and non-immunogenic properties and has been demonstrated to support tissue regeneration. Also, gelatin is a natural material derived from collagen by hydrolysis and has an almost identical composition as that of collagen. Silk fibroin/gelatin scaffolds have been fabricated by using the freeze-drying method. To establish the scaffold manufacturing condition for silk fibroin and gelatin, we made scaffolds with various compositions of gelatin, glutaldehyde and silk fibroin. The silk fibroin/gelatin scaffolds were characterized using SEM, DSC, and water absorption ability tests. The cellular proliferation was evaluated by WST assay. These results suggested that a scaffold containing 8% of gelatin, 1% of glutaldehyde and 0.3 g of silk fibroin provided suitable characterstics for cell adhesion and proliferation. In conclusion, the silk fibroin/gelatin scaffold may serve as a potential cell delivery vehicle and a structural basis for tissue engineering.
Keywords
silk fibroin; gelatin; scaffold; tissue engineering;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. H. Lee, S. J. Park, H. J. Chun, and C. H. Kim, Inter. J. Tissue Reg., 1, 1, (2010).
2 G. Khang, J. M Rhee, J. H. Lee, I. Lee, and H. B. Lee, Macromol. Res., 8, 276 (2000).
3 B. L. Seal, T. C. Pterom, and A. Panitch, Mater. Sci. Eng., 34, 147 (2001).   DOI   ScienceOn
4 F. T. Moutos, L. E. Freed, and F. Guilak, Nature Materials, 6, 162 (2007).   DOI   ScienceOn
5 H. L. Kim, H. Yoo, H. J. Park, Y. G. Kim, D. Lee, Y. S. Kang, and G. Khang, Polymer(Korea), 35, 7 (2011).
6 Y. S. Choi, S. B. Lee, S. R. Hong, Y. M. Lee, K. W. Song, and M. H. Park, J. Mater. Sci., 12, 67 (2001).
7 H. K. Choi and J. H. Hahm, Korean J. Seric. Sci., 37, 142 (1995).
8 H. Y. Kweon, K. Lee, J. Yeo, S. O. Woo. S. M. Han, Y. W. Lee, J. H. Lee, and Y. H. Park, Korean J. Seric. Sci., 46, 28 (2004).
9 A. Bigi, S. Panzavolta, and N. Roveri, Biomaterials, 19, 739 (1998).   DOI   ScienceOn
10 H. L. Kim, S. J. Kim, H. Yoo, M. Hong, D. Lee, and G. Khang, Inter. J. Tissue Reg., 1, 81 (2010).
11 A. Bigi, B. Braccia, G. Cojazzib, S. Panzavolta, and N. Roveri, Biomaterials, 19, 24 (1998).
12 M. S. Choi, H. D. Han, H. Seong, E. S. Park, S. C. Chi, and B. C. Shin, J. Korean Chem. Soc., 50, 3 (2006).   DOI   ScienceOn
13 J. S. Mao, H. F. Liu, Y. J. Yin, and K. D. Yao, Biomaterials, 24, 1621 (2003).   DOI   ScienceOn
14 V. Normand, S. Muller, J. C. Ravey, and A. Parker, Macromolecules, 33, 1063 (2000).   DOI   ScienceOn
15 Y. J. Kim, Polymer(Korea), 32, 5 (2008).
16 L. Zhensheng, H. R. Ramay, K. D. Hauch, D. Xiao, and M. Zhang, Biomaterials, 26, 18 (2005).
17 L. Uebersaxa, M. Mattottia, M. Papaloïzosb, H. P. Merkle, B. Gander, and L. Meinel, Biomaterials, 28, 30 (2007).
18 W. H. Wong, D. J. Mooney, and A. Atala, Synthetic Biodegradable Polymer Scaffolds, Boston, MA, Birkhauser, Chap 4 (1996).
19 S. H. Kim, S. J. Yun, J. W Jang, M. S. Kim, G. Khang, and H. B. Lee, Polymer(Korea), 30, 14 (2006).
20 L. Meinel, O. Betz, R. Fajardo, S. Hofmann, A. Nazarian, E. Cory, M. Hilbe, J. M. Cool, R. Langer, G. Vunjak-Novakovic, H. P. Merkle, B. Rechenberg, D. L. Kaplan, and C. Kirker- Head, Bone, 39, 4 (2006).
21 M. Garcia-Fuentesa, A. J. Meinela, M. Hilbeb, L. Meinel, and H. P. Merkle, Biomaterials, 30, 28 (2009).
22 D. Ledward, P. Philips, and P. Williams, "Gelatin", in Handbook of Hydrocolloid, Boca Raton, CRC Press, p 67 (2000).
23 G. Khang, S. J. Lee, M. S. Kim, and H. B. Lee, "Tissue Engineering", in Webster's Biomedical Engineering Handbook, S. Webster, Editor, John & Wiley Press, NY, p 366 (2006).
24 Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, and H. B. Lee, Polymer(Korea), 31, 14 (2007).