• Title/Summary/Keyword: Hybrid navigation system

Search Result 131, Processing Time 0.04 seconds

A Trend Survey on Precision Positioning Technology for Drones (드론 정밀 측위 기술 동향)

  • J.H. Lee;J. Jeon;K. Han;Y. Cho;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Drones, which were early operated by remote control, have evolved to enable autonomous flight by combining various sensors and software tools. In particular, autonomous flight of drones was possible since the application of GNSS-RTK (global navigation satellite system with real-time kinematic positioning), a precision satellite navigation technology. For instance, unmanned drone delivery based on GNSS-RTK data was demonstrated for pizza delivery in Korea for the first time in 2021. However, the vulnerabilities of GNSS-RTK should be overcome for delivery drones to be commercialized. In particular, jamming in the navigation system and low positioning accuracy in urban areas should be addressed. Solving these two problems can lead to stable flight, takeoff, and landing of drones in urban areas, and the corresponding solutions are expected to establish a hybrid positioning technology. We discuss current trends in hybrid positioning technology that can either replace or complement GNSS-RTK for stable drone autonomous flight.

Rapid Initial Alignment Method of Inertial Navigation System Using Adaptive Time Delay Compensation (적응형 시간지연 보상을 통한 관성항법장치 급속초기정렬기법)

  • Lee, Hyung-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.433-439
    • /
    • 2018
  • In this paper, a SDINS(strapdown inertial navigation system) rapid initial alignment technique with adaptive time delay compensation is proposed. The proposed method consists of two steps. In first step, misalignment and data latency are estimated by conducting pre-transfer alignment. Then, hybrid alignment is designed to rapidly find the misalignment changes induced by pyro-shock. To improve the performance of hybrid alignment, adaptive time delay compensation method is suggested. We verify the performance improvement of the proposed alignment scheme comparing with the conventional transfer alignment method by van test. The test result shows that the proposed alignment technique improves alignment performance.

Control System of Service Robot for Hospital (병원용 서비스 로봇의 제어시스템)

  • 박태호;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.540-544
    • /
    • 2001
  • This paper addresses a hybrid control architecture for the hospital service robot, SmartHelper. In hybrid architecture, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the hybrid architecture is verified.

  • PDF

Autonomous Navigation of AGVs in Automated Container Terminals

  • Kim, Yong-Shik;Hong, Keum-Shik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.459-464
    • /
    • 2004
  • In this paper, an autonomous navigation system for autonomous guided vehicles (AGVs) operated in an automated container terminal is designed. The navigation system is based on the sensors detecting the range and bearing. The navigation algorithm used is an interacting multiple model (IMM) algorithm to detect other AGVs and avoid other obstacles using informations obtained from multiple sensors. As models to detect other AGVs (or obstacles), two kinematic models are derived: Constant velocity model for linear motion and constant speed turn model for curvilinear motion. For constant speed turn model, an unscented Kalman filter (UKF) is used because of drawbacks of the extended Kalman filter (EKF) in nonlinear system. The suggested algorithm reduces the root mean squares error for linear motions, while it can rapidly detect possible turning motions.

  • PDF

A Comparison of Broadcast and Final Orbits on GPS Delays in GPS-VLBI Hybrid Observation

  • Kwak, Younghee;Cho, Jungho;Kondo, Tetsuro;Takiguchi, Hiroshi;Amagai, Jun;Gotoh, Tadahiro;Sekido, Mamoru;Ichikawa, Ryuichi;Kim, Tuhwan;Sasao, Tetsuo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 2012
  • We carry out an error analysis of 24-hour global positioning system (GPS)-very long baseline interferometry (VLBI) (GV) hybrid observation data. In this paper, we focus on the impacts of broadcast and final orbits on the GPS delays of the GV hybrid observation by analyzing the residuals, observed - calculated (O-C) values. The residuals show apparent and consistent biases for L1 and L2 signals, respectively. The scatters of the residuals are around a few nanoseconds. The main cause of those observation errors is the absence of the GPS phase and delay calibration system. Most of the satellites show that the differences between the delays, to which broadcast and final orbits are applied, are about 100 times smaller than the current GV hybrid observation errors. We conclude that GPS delays are not greatly affected by orbit accuracies.

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

A new GPS/DR integration filter for a car navigation system (차량항법시스템을 위한 새로운 GPS/DR Integration 필터)

  • 김세환;박상현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.884-887
    • /
    • 1996
  • This paper describes a GPS/DR integration filter for a car navigation system. A new GPS/DR integration filter is derived for obtaining more accurate and reliable position data. The covariance analysis results and simulation results are shown for evaluating the performance of the proposed GPS/DR integration filter.

  • PDF

Hybrid navigation parameter estimation from aerial image sequence (항공영상을 이용한 하이브리드 영상 항법 변수 추출)

  • 심동규;정상용;이도형;박래홍;김린철;이상욱
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.146-156
    • /
    • 1998
  • Thispapr proposes hybrid navigation parameter estimation using sequential aerial images. The proposed navigation parameter estimation system is composed of two parts: relative position estimation and absolute position estimation. the relative position estimation recursively computes the current velocity and absolute position estimation. The relative position estimation recursively computes the current velocity and position of an aircraft by accumulating navigation parameters extracted from two succesive aerial images. Simple accumulation of parameter values decreases reliability of the extracted parameters as an aircraft goes on navigating. therefore absolute position estimation is required to compensate for position error generated in the relative position step. The absolute position estimation algorithm combining image matching and digital elevation model(DEM) matching is presented. Computer simulation with real aerial image sequences shows the efficiency of the proposed hybrial algorithm.

  • PDF

Implementation of Hybrid Deliberative/Reactive Control Architecture for Autonomous Navigation of a Mobile Robot in Dynamic Environments (동적 환경에서 이동로봇의 자율주행을 위한 혼합 심의/반응 제어구조의 구현)

  • Nam Hwa-Sung;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.154-160
    • /
    • 2006
  • Instantaneous reaction and intelligence are required for autonomous mobile robots to achieve multiple goals in the unpredictable and dynamic environments. Design of the appropriate control architecture and clear definitions of systems are needed to construct and control these robots. This research proposes the hybrid deliberative/reactive control architecture which consists of three layers and uses the method of software structure design. The highest layer, Deliberative Layer makes the overall run-time schedule for navigation and/or manipulation, and the middle layer, Task Execution Layer carries out various missions. The lowest layer, Reactive Layer enables a robot to react rapidly in the dynamic environment and controls the mechanical devices concurrently. This paper proposes independent system supervisors called Manager to reuse the modules so that the Manager supports common use of the system and multi-processing tasks. It is shown that the mobile robot based on the proposed control scheme can perform the basic navigation and cope with the dynamic obstacles reasonably well.