• Title/Summary/Keyword: Hybrid motor

Search Result 685, Processing Time 0.042 seconds

Position Controller for Clutch Drive System of PHEV(Plug in Hybrid Electric Vehicle) (PHEV(Plug in Hybrid Electric Vehicle)의 클러치 구동 시스템을 위한 BLDC 모터의 위치제어기)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Mok, Hyung-Soo;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.166-173
    • /
    • 2012
  • Plug-in Hybrid Electric Vehicle is driven by the engine, the primary traction motor, and the secondary auxiliary motor generating the electric power for battery charging. Secondary auxiliary motor should be connected to the engine or separated from the engine by the clutch system. This paper presents the position controller of the BLDC motor for the clutch system of Plug-in Hybrid Electric Vehicle. The BLDC motor can be applied to the clutch system in spite of it's low accuracy of the position control due to high gear ratio between the clutch and the motor. Since the attachment and the detachment between the motor and the engine should be carried out within 0.3 seconds, the position controller with fast acceleration and deceleration is implemented. For the torque control with braking operation for the BLDC motor, the modified bipolar PWM method with low current ripple compared to the conventional unipolar PWM is presented. The position control performance of the BLDC motor for the clutch system is verified through the simulation and experiments.

Feasibility Assessment of New Hybrid Linear Motor Using Magnetostrictive Material

  • Kim, Jaehwan;Doo, Jae-Kyun;Kim, Jae-Do
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.26-30
    • /
    • 2001
  • This paper deals with the feasibility assessment of hybrid linear motor that operates based on self-moving cell concept. The moving cell is composed of Magnetostrictive actuator and a ring structure, and a cell train is constructed by connecting two cells in series. Since this motor uses strong push force of Terfenol-D actuators and friction of the cells, it can essentially produce long stroke and large force. The overall performance of the motor was measured in terms of speed and force.

  • PDF

Haptic Experimentation for Single Degree of Freedom Force Output Joystick using Hybrid Motor/Brake Actuator

  • Jinung An;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.171.1-171
    • /
    • 2001
  • This paper describes the design and implementation of a new type of a force reflective joystick. It has single degree of freedom that is actuated by motor and brake pair. The use of motor and brake allows various objects to be simulated without the stability problem and related safety issues involved with high torque motors only. The joystick performance is measured by its ability to simulate various test objects. Simple test objects are modeled as a benchmark test of the system´s performance and to evaluate different control approaches for hybrid motor/brake actuator. The force output joystick is capable of simulating forces in a variety of virtual environments. This device demonstrates the effectiveness of a hybrid motor/brake haptic actuator.

  • PDF

Robust speed control of DC motor using Expert Hybrid controller (전문가 제어기를 이용한 직류 전동기의 강인 제어)

  • Cho, Hyeon-Seob;Oh, Hun;Jeon, Jeong-Chay;Ryu, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2799-2801
    • /
    • 2000
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. In this paper, PID-Expert hybrid control method for motor control system as a compensation method solving this problem is presented. If PID control system is stable, the Expert controller is idle. if the error hits the boundary of the constraint. the Expert controller begins operation to force the error back to the constraint set. The disturbance effect decrease remarkably, robust speed control of DC motor using PID-Expert Hybrid controller is demonstrated by the simulation.

  • PDF

Development of hybrid type linear motor and its driving system (Hybrid type linear motor의 개발과 구동)

  • Kim Moon-Hwan;Kim Soon-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.278-281
    • /
    • 2006
  • A Hybrid type LPM(Linear Pulse Motor) is designed as single side stator structure. Experimental results are shown that the static and dynamic characteristics. By the computer simulation, the permanent magnet design method is also clarified to desired thrust force. And microstep driver is adopted to the position controller to the designed LPM. The driver suppressed position errors within ${\pm}1501{\mu}m$.

  • PDF

Development of electric Four Wheel Drive System (e-4WD 시스템 개발)

  • Jo, Hee Young
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • e-4WD(Electric-4WD) system is a 4WD(4-Wheel Drive) System that can transform a car into a Hybrid System. e-4WD consists of a Motor, Inverter, Speed reducer and Clutch. The Motor, Speed reducer and Clutch are installed on the rear sub-frame as a chassis module type. The inverter is installed separately. Compared to a mechanical 4WD, the e-4WD system has many advantages. For example, the reduced number of drivetrain components makes better use of the space. Driving with a motor only at low speed improves fuel economy and reduces exhaust gas. Engine downsizing is available because the motor assists the engine. The performance of a conventional HEV(Hybrid Electric Vehicle) system can also be maintained. This paper proposes the specifications of components and the control logic for an e-4WD System. And the effect of the e-4WD system is proven using a test vehicle equipped with components under various test conditions.

A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor (서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구)

  • Yun, Hongsik;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.

A study on the design of HB step motor using the piecewise-linear circuit analysis (구간 선형 회로 해석을 이용한 HB 스텝 모터의 설계에 관한 연구)

  • 이태규;허욱렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.573-578
    • /
    • 1988
  • The objectives of this paper are to establish an equivalent magnetic circuit of the hybrid PM step motor and to apply the canonical piecewise linear eqation and the Kazenelson algorithm of solving the nonlinear magnetic circuit, so that the static holding torque and the magnetic properties of the motor are determined. The results of that are applied to the design of the hybrid step motor.

  • PDF

The Development of a Motor and Controller for Hybrid System (하이브리드 시스템용 모터 및 제어기 개발)

  • Ha, Hoi-Doo;Park, Jung-Woo;Kim, Jong-Moo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.231-233
    • /
    • 1995
  • The new hybrid scheme for electric bus is presented in this paper. This system is composed of a three-phase AC induction motor, one inveter and one system controller. The motor can be acted as starter, motor itself, alternator, generator and retarder. Various functions are simulated. The design stage has been finished. And the various experimental tests are undertaken now.

  • PDF

FMEA and FTA for Reliability Analysis of Hybrid Rocket Motor (하이브리드 로켓 모터의 신뢰성 분석을 위한 FMEA 및 FTA)

  • Moon, Keun Hwan;Kim, Dong Seong;Choi, Joo Ho;Kim, Jin Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • In this study, the FMEA and FTA for reliability analysis of hybrid rocket motor are performed, that was designed in the Hybrid Rocket Propulsion Laboratory of Korea Aerospace University. In order to carry out these analyses the structure of the hybrid rocket motor is hierarchically divided into 36 parts down to the component level and FMEA is carried out with 72 failure modes. Reliability is assessed based on the FMEA, and the results are used in the FTA to evaluate the overall system reliability. In the FMEA, the relationship between the cause and failure modes, effects and their risk priorities are evaluated qualitatively. 27 failure modes are chosen as those with the critical severity that should be improved with priority. As a result of the FMEA / FTA study, a series of design or material changes are made for the improvement of reliability.