• Title/Summary/Keyword: Hybrid motion blending

Search Result 6, Processing Time 0.026 seconds

Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation (매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘)

  • Chung, Won-Jee;Ju, Ji-Hun;Lee, Kee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2) (LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구)

  • Lee, D.S.;Chung, W.J.;Jang, J.H.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.

Posture Stabilization Control for Mobile Robot using Marker Recognition and Hybrid Visual Servoing (마커인식과 혼합 비주얼 서보잉 기법을 통한 이동로봇의 자세 안정화 제어)

  • Lee, Sung-Goo;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1577-1585
    • /
    • 2011
  • This paper proposes a posture stabilization control algorithm for a wheeled mobile robot using hybrid visual servo control method with a position based and an image based visual servoing (PBVS and IBVS). To overcome chattering phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed hybrid visual servo control law introduces the fusion function based on a blending function. Then, the chattering problem and rapid motion of the mobile robot can be eliminated. Also, we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture stabilization control law using hybrid visual servoing is verified by a theoretical analysis and simulation and experimental results.