• Title/Summary/Keyword: Hybrid molecule

검색결과 37건 처리시간 0.03초

CD1d와 상호작용하는 단백질의 동정 (The Identification of Proteins Interacting with CD1d)

  • 황광우;전태훈
    • 약학회지
    • /
    • 제50권4호
    • /
    • pp.263-267
    • /
    • 2006
  • CD1d is an unique antigen presenting molecule which provides antigenic repertoires to NKT cells. To examine molecules required for CD1d antigen presentation, we determined an interaction between CD1d and several endoplasmic reticulum (ER) resident molecular chaperones by co-immunoprecipitation. Results indicated that calnexin and calreticulin seem to be bound to mouse CD1d, but TAP and tapasin do not bind. Further, we screened an yeat two hybrid system to identify proteins that help mouse CD1d transportation in the cytosol. We found that two proteins, heat shock protein a sub-unit $(Hsp90{\alpha})$ and protein kinase C and casein kinase substrate in neurons 3 (PACSIN-3), interact with CD1d. Future study will be focus on the role of these molecules during the CD1d antigen presentation.

First-principles study of dissociation processes of O2 molecular on the Al (111) surface

  • Sun, Shiyang;Xu, Pingping;Ren, Yuan;Tan, Xin;Li, Geyang
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1528-1533
    • /
    • 2018
  • The trajectories of adsorption and dissociation process of $O_2$ on the Al (111) surface were studied by the spinpolarized ab initio molecular dynamics method, and the adsorption activation energy was clarified by the NEB method with hybrid functionals. Three typical dissociation trajectories were found through simulation of $O_2$ molecule at different initial positions. When vertically approaches to the Al surface, the $O_2$ molecule tends to rotate, and the activation energy is 0.66eV. If $O_2$ molecule does not rotate, the activation energy will increase to 1.43 eV, and it makes the O atom enter the Al sublayer eventually. When the $O_2$ molecules parallel approach to the Al surface, there is no activation energy, due to the huge energy released during the adsorption process.

혼성 Bivalent Ligand 퀴놀론 유도체의 합성 (Synthesis of Hybrid Bivalent Ligand Quinolone Derivatives)

  • 이상필;임채욱;김동순;임철부
    • 약학회지
    • /
    • 제38권6호
    • /
    • pp.664-672
    • /
    • 1994
  • Eighteen new hybrid bivalent ligand quinolones that contain two different type of pharmacophores in a single molecule were prepared and evaluated for in viかo antibacterial activity. Hybrid bivalent ligands p-nitrobenzyloxycarbonyl quinolones were prepared by the treatment of active esters of succinyl fluoroquinolones with 1,7-disubstituted fluoroquinolone carboxylic acids in DMF. Eighteen final quinolone carboxylic acids were obtained by the reduction of compounds $25{\sim}42$ with hydrogen in the presence of 10% Pd-C. Among these derivatives, compound[56] showed the most potent antibacterial activity against a wide range of microoranisms.

  • PDF

High Efficiency AMOLED using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • Journal of Information Display
    • /
    • 제4권3호
    • /
    • pp.1-5
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages such as high-resolution patterning with over all position accuracy of the imaged stripes of within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished by real-time error correction and a high-resolution stage control system that includes laser interferometers. Here the new concept of hybrid system that complement the merits of small molecule and polymer to be used as an OLED; our system can realize easy processing of light emitting polymers and high luminance efficiency of small molecules. LITI process enables the stripes to be patlerned with excellent thickness uniformity and multi-stacking of various functional layers without having to use any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure consisting of small molecules and polymers.

Construction and Characterization of Escherichia coli-Corynebacterium nephridii Hybrid Thioredoxins

  • Sa, Jae-Hoon;Kim, Kyung-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제28권1호
    • /
    • pp.51-56
    • /
    • 1995
  • Thioredoxin is a small redox protein with an active-site disulfide/dithiol, and is ubiquitous in bacteria, plants, and animals. To investigate the structure-function relationship of thioredoxin, the genes encoding Escherichia coli thioredoxin and Corynebacterium nephridii thioredoxin C3 were fused via a common restriction site in the nucleotide sequence coding for the active site of the proteins to generate two chimeric thioredoxins, designated E-C3(N to C-terminal) and C3-E. The hybrid thioredoxin genes were put under the T7 promoter and their productions were confirmed. The two hybrid thioredoxins complemented phenotypes of a thioredoxin-deficient E. coli strain. A strain containing the C3-E hybrid thioredoxin supported growth of the T7 phage, whereas a strain expressing the E-C3 hybrid thioredoxin did not. However, both hybrids supported growth of M13 phages. The two hybrid thioredoxins were also characterized in other aspects. Differences in activity between the hybrid thioredoxins were attributed to altered interactions of the N- and C-terminal domains of the molecule, which produced changes in the three-dimensional structure of the active site region.

  • PDF

Enhancing Performance of 1-aminopyrene Light-Emitting Diodes via Hybridization with ZnO Quantum Dots

  • Choi, Jong Hyun;Kim, Hong Hee;Choi, Won Kook
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.238-243
    • /
    • 2022
  • In this study, a pyrene-core single molecule with amino (-NH2) functional group material was hybridized using ZnO quantum dots (QDs). The suppressed performance of the 1-aminopyrene (1-PyNH2) single molecule as an emissive layer (EML) in light-emitting diodes (LEDs) was exploited by adopting the ZnO@1-PyNH2 core-shell structure. Unlike pristine 1-PyNH2 molecules, the ZnO@1-PyNH2 hybrid QDs formed energy proximity levels that enabled charge transfer. This result can be interpreted as an improvement in surface roughness. The uniform and homogeneous EML alleviates dark-spot degradation. Moreover, LEDs with the ITO/PEDOT:PSS/TFB/EML/TPBi/LiF/Al configuration were fabricated to evaluate the performance of two emissive materials, where pristine-1-PyNH2 molecules and ZnO@1-PyNH2 QDs were used as the EML materials to verify the improvement in electrical characteristics. The ZnO@1-PyNH2 LEDs exhibited blue luminescence at 443 nm (FWHM = 49 nm), with a turn-on voltage of 4 V, maximum luminance of 1500 cd/m2, maximum luminous efficiency of 0.66 cd/A, and power efficiency of 0.41 lm/W.

폴리비닐알코올 $H_6P_2W_{18}O_{62}$ hybrid membranes의 광색 및 열적 특성 (Photochromic and thermal properties of poly (Vinyl alcohol)/ $H_6P_2W_{18}O_{62}$ hybrid membranes)

  • Jian Gong;Kim, Hak-Yong;Lee, Duck-Rae;Bin Ding;Xiangdan Li
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.459-461
    • /
    • 2002
  • A new class of materials based on organic and inorganic species combined at a molecule level has obtained more attention recently[1]. HPA(heteropolyacid) shows unmatched applied perspective in terms of synthesis chemistry, analysis chemistry, biology, medicine and materials science[2]. As a potential photochemical material, the hybrid system of HPA and polymer has been investigated. However, the design and synthesis of heteropolyacid-based hybrids, which are at the forefront of the materials chemistry research, is still in its infancy. (omitted)

  • PDF

고분자/베타-사이클로덱스트린 포접 화합물로 이루어진 고분자 혼성체 필름의 물성 및 구조에 미치는 게스트 분자의 영향 (Effect of Guest Molecules on Structure and Properties of Polymer/beta-Cyclodextrin Inclusion Compound Hybrid Films)

  • 배준원
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.504-508
    • /
    • 2021
  • 본 연구에서는 게스트 분자(guest molecule)의 특성이 고분자/베타-사이클로덱스트린(beta-cyclodextrin) 포접화합물(inclusion compound)로 이루어진 고분자 필름의 구조 및 물성에 미치는 영향에 대해서 고찰하고자 한다. 본 연구에서 사용된 게스트 분자는 미백 효과를 지니는 것으로 알려진 3가지로 하이드로퀴논(hydroquinone, HQ), 알부틴(arbutin, AB), 그리고 트랜액사믹 애시드(tranexamic acid, TA)이다. 먼저, 베타-사이클로덱스트린과 게스트 분자 간의 포접화합물의 성공적인 형성과 이를 포함하는 고분자 필름의 제조여부를 라만(Raman) 분광학으로 확인하였다. 포접화합물을 포함하는 고분자 필름의 구조 및 물성은 엑스선 회절법(X-ray diffraction)과 주사열용량법 및 열중량추적법 같은 열분석법으로 고찰하였다. 그 결과, 트랜액사믹 애시드의 영향이 다른 분자의 영향과 비교하여 상당히 상이하였음을 관찰할 수 있었다. 이러한 경향은 간단한 분자 시뮬레이션 기법으로 재검증하였다. 본 연구는 포접화합물을 형성하는 게스트 분자들의 상이한 영향에 대한 체계적인 접근을 통한 실험적 검증의 사례로 향후 관련 연구에 중요한 정보를 제공할 것으로 기대된다.

일본 새매 (Accipiter virugatus gularis)로부터 분리된 Paramyxovirus에 대한 단 Clone성 항체 (Monoclonal Antibodies Against a Paramyxovirus Isolated from Japanese Sparrow-Hawks(Accipiter virugatus gularis))

  • Hoshi;Mikami, S.T.;Onuma, M.;Izawa, H.
    • 한국가금학회지
    • /
    • 제10권1호
    • /
    • pp.60-66
    • /
    • 1983
  • Monoclonal antibodies against Taka virus, a variant of Newcastle disease virus (NDV), were produced to compare the antigenicites of several avian paramyxoviruses including NDV. It was also used to study the activesite(s) of haemagglutin (HA) and neuraminidase activities of NDV. Five independent hybrid cell lines, which produced monoclonal antibodies against haemagglutinin-neuraminidase (HN) molecule of Taka virus, were established. From the results of the cross haemagglutination-inhibition(HI) test the monoclonal antibodies, the HN molecule of Taka virus seemed to have at least three different antigenic determinats; one was specific for all NDV strain tested, the second was only for Taka virus and the third was for Take virus, Banger and Yucaipa Furthermore the differences in the ratio of HI to neuraminidase-inhibition titers suggested that the active sites involved in HA and neuraminidase activities might be different from each other. However, since each of five monoclonal anitbodies was not especially specific for either HA or neuraminidase, the possibility that a single active site on the HN molecule may be responsible for both activities has not been excluded.

  • PDF