본 연구는 만성질환 중의 하나인 고지혈증 유병을 예측하는 분류모형을 개발하고자 한다. 이를 위해 SVM과 meta-learning 알고리즘을 이용하여 성과를 비교하였다. 또한 각 알고리즘에서 성과를 향상시키기 위해 변수선정 방법을 통해 유의한 변수만을 선정하여 투입하여 분석하였고 이 결과 역시 각각 성과를 비교하였다. 본 연구목적을 달성하기 위해 한국의료패널 2012년 자료를 이용하였고, 변수 선정을 위해 세 가지 방법을 사용하였다. 먼저 단계적 회귀분석(stepwise regression)을 실시하였다. 둘째, 의사결정나무(decision tree) 알고리즘을 사용하였다. 마지막으로 유전자 알고리즘을 사용하여 변수를 선정하였다. 한편, 이렇게 선정된 변수를 기준으로 SVM, meta-learning 알고리즘 등을 이용하여 고지혈증 환자분류 예측모형을 비교하였고, TP rate, precision 등을 사용하여 분류 성과를 비교분석하였다. 이에 대한 분석결과는 다음과 같다. 첫째, 모든 변수를 투입하여 분류한 결과 SVM의 정확도는 88.4%, 인공신경망의 정확도는 86.7%로 SVM의 정확도가 좀 더 높았다. 둘째, stepwise를 통해 선정된 변수만을 투입하여 분류한 결과 전체 변수를 투입하였을 때보다 각각 정확도가 약간 높았다. 셋째, 의사결정나무에 의해 선정된 변수 3개만을 투입하였을 때 인공신경망의 정확도가 SVM보다 높았다. 유전자 알고리즘을 통해 선정된 변수를 투입하여 분류한 결과 SVM은 88.5%, 인공신경망은 87.9%의 분류 정확도를 보여 주었다. 마지막으로, 본 연구에서 제안하는 meta-learning 알고리즘인 스태킹(stacking)을 적용한 결과로서, SVM과 MLP의 예측결과를 메타 분류기인 SVM의 입력변수로 사용하여 예측한 결과, 고지혈증 분류 정확도가 meta-learning 알고리즘 중에서는 가장 높은 것으로 나타났다.
International Journal of Control, Automation, and Systems
/
제1권3호
/
pp.321-331
/
2003
Experimental software datasets describing software projects in terms of their complexity and development time have been the subject of intensive modeling. A number of various modeling methodologies and modeling designs have been proposed including such approaches as neural networks, fuzzy, and fuzzy neural network models. In this study, we introduce the concept of the Rule-based fuzzy polynomial neural networks (RFPNN) as a hybrid modeling architecture and discuss its comprehensive design methodology. The development of the RFPNN dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The architecture of the RFPNN results from a synergistic usage of RFNN and PNN. RFNN contribute to the formation of the premise part of the rule-based structure of the RFPNN. The consequence part of the RFPNN is designed using PNN. We discuss two kinds of RFPNN architectures and propose a comprehensive learning algorithm. In particular, it is shown that this network exhibits a dynamic structure. The experimental results include well-known software data such as the NASA dataset concerning software cost estimation and the one describing software modules of the Medical Imaging System (MIS).
Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.
For a friendly interaction between human and robot, emotional interchange has recently been more important. So many researchers who are investigating the emotion generation model tried to naturalize the robot's emotional state and to improve the usability of the model for the designer of the robot. And also the various emotion generation of the robot is needed to increase the believability of the robot. So in this paper we used the hybrid emotion generation architecture, and defined the generalized context input of emotion generation model for the designer to easily implement it to the robot. And we developed the personality and loyalty model based on the psychology for various emotion generation. Robot's personality is implemented with the emotional stability from Big-Five, and loyalty is made of familiarity generation, expression, and learning procedure which are based on the human-human social relationship such as balance theory and social exchange theory. We verify this emotion generation model by implementing it to the 'user calling and scheduling' scenario.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.631-653
/
2020
Sign language is a natural, visually oriented and non-verbal communication channel between people that facilitates communication through facial/bodily expressions, postures and a set of gestures. It is basically used for communication with people who are deaf or hard of hearing. In order to understand such communication quickly and accurately, the design of a successful sign language translation system is considered in this paper. The proposed system includes object detection and classification stages. Firstly, Single Shot Multi Box Detection (SSD) architecture is utilized for hand detection, then a deep learning structure based on the Inception v3 plus Support Vector Machine (SVM) that combines feature extraction and classification stages is proposed to constructively translate the detected hand gestures. A sign language fingerspelling dataset is used for the design of the proposed model. The obtained results and comparative analysis demonstrate the efficiency of using the proposed hybrid structure in sign language translation.
The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.
품사 태깅은 형태소 분석 이후 발생한 모호성을 제거하는 것으로, 통계적 방법과 규칙에 기 반한 방법이 널리 사용되고 있다. 하지만, 이들 방법론에는 각기 한계점을 지니고 있다. 통계적인 방법인 은닉 마코프 모델(Hidden Markov Model)은 유연성(flexibility)을 지니지만, 교착어(agglutinative language)인 한국어에 있어서 제한된 윈도우로 인하여, 중의성 해결의 실마리가 되는 어휘나 품사별 제대로 참조하지 못하는 경우가 있다. 반면, 규칙에 기반한 방법은 차체가 품사에 영향을 받으므로 인하여, 새로운 태그집합(tagset)이나 언어에 대하여 유연성이나 정확성을 제공해 주지 못한다. 이러한 각기 서로 다른 방법론의 한계를 극복하기 위하여, 본 논문에서는 통계와 규칙을 통합한 한국어 태깅 모델을 제안한다. 즉 통계적 학습을 통한 통계 모델이후에 2차적으로 규칙을 자동학습 하게 하여, 통계모델이 다루지 못하는 범위의 규칙을 생성하게 된다. 이처럼 2단계의 통계와 규칙의 자동 학습단계를 거치게 됨으로써, 두개 모델의 단점을 보강한 높은 정확도를 가지는 한국어 태거를 개발할 수 있게 하였다.
It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.
It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.
3D convolution is to stack multiple consecutive frames to form a cube, and then apply the 3D convolution kernel in the cube. In this structure, each feature map of the convolutional layer is connected to multiple adjacent sequential frames in the previous layer, thus capturing the motion information. However, due to the changes of pedestrian posture, motion and position, the convolution at the same place is inappropriate, and when the 3D convolution kernel is convoluted in the time domain, only time domain features of three consecutive frames can be extracted, which is not a good enough to get action information. This paper proposes an action recognition method based on feature fusion of 3D convolutional neural network. Based on the VGG16 network model, sending a pre-acquired optical flow image for learning, then get the time domain features, and then the feature of the time domain is extracted from the features extracted by the 3D convolutional neural network. Finally, the behavior classification is done by the SVM classifier.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.