• Title/Summary/Keyword: Hybrid heating

Search Result 196, Processing Time 0.025 seconds

Characteristics of ITO/Ag/ITO Hybrid Layers Prepared by Magnetron Sputtering for Transparent Film Heaters

  • Kim, Jaeyeon;Kim, Seohan;Yoon, Seonghwan;Song, Pungkeun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.807-812
    • /
    • 2016
  • Transparent film heaters (TFHs) based on Joule heating are currently an active research area. However, TFHs based on an indium tin oxide (ITO) monolayer have a number of problems. For example, heating is concentrated in only part of the device. Also, heating efficiency is low because it has high sheet resistance ($R_s$). To address these problems, this study introduced hybrid layers of ITO/Ag/ITO deposited by magnetron sputtering, and the electrical, optical, and thermal properties were estimated for various thicknesses of the metal interlayer. The $R_s$ of ITO(40)/Ag/ITO(40 nm) hybrid TFHs were 5.33, 3.29 and $2.15{\Omega}/{\Box}$ for Ag thicknesses of 10, 15, and 20 nm, respectively, while the $R_s$ of an ITO monolayer (95 nm) was $59.58{\Omega}/{\Box}$. The maximum temperatures of these hybrid TFHs were 92, 131, and $145^{\circ}C$, respectively, under a voltage of 3 V. And that of the ITO monolayer was only $32^{\circ}C$. For the same total thickness of 95 nm, the heat generation rate (HGR) of the hybrid produced a temperature approximately $100^{\circ}C$ higher than the ITO monolayer. It was confirmed that the film with the lowest $R_s$ of the samples had the highest HGR for the same applied voltage. Overall, hybrid layers of ITO/Ag/ITO showed excellent performance for HGR, uniformity of heat distribution, and thermal response time.

Spalling Prevention of High Strength concrete Corresponding to the Various Heating Curves (가열온도곡선 변화에 따른 고강도 콘크리트의 폭렬방지특성)

  • Han, Cheon-Goo;Pei, Chang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.127-134
    • /
    • 2009
  • This study investigated their properties of spalling resistance and residual compressive strength after fire test corresponding to various ISO, RABT heating curves, and contents of hybrid organic fiber of high strength concrete. The results were summarized as following. As fundamental characters of concrete with hybrid organic fiber, the flowability was directly declined as the increase of fiber contents, and air contents were decreased or increased a little bit, but there was not big difference. The compressive strength was gradually declined sluggishly at 28 days. As properties of fire resistance, in case of RABT heating curves, compare with ISO heating curves a spalling aspect showed till range that has much contents of hybrid organic fiber, but they are mostly peeling spalling, which means spalling aspect didn't happen to inside. In conclusion, in case of W/B 25% high strength concrete, the spalling was prevented over 0.04% of contents of fiber at ISO heating curve and over 0.10% of contents of fiber at the RABT heating curve. In case of spalling was prevented, mass reduction rate according to the change of heating temperature curves showed around 7% at ISO heating curves and around 9% at RABT heating curves. The residual compressive strength rate corresponding to the change of heating temperature curves showed 50%~60% at ISO heating temperature curves and 30%~35% at RABT heating temperature curves in case of spalling was prevented.

An Experimental Study on the Load Delivery Characteristics of Hybrid Energy System with Geothermal and Solar Heat Sources (지열-태양열원 복합시스템의 부하추종특성에 관한 실험 연구)

  • Hwang, In-Ju;Woo, Nam-Sub
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of the present study is to investigate the load delivery characteristics of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of a residential house in Korea. The hybrid energy system consists of ground source heat pump of 2 RT for cooling with a 150 m vertical U-bend ground heat exchanger, solar collectors of 4.8 m2 and gas fired backup boiler. The averaged coefficient of performance of geothermal module during cooling and heating seasons are evaluated as about 4.5 and 3.8, respectively.

  • PDF

A Study of Ion-Hybrid Instability in the Mixed Plasma (혼합 플라즈마 내의 이온-이온 교잡파의 불안정성 연구)

  • 김수용
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.81-88
    • /
    • 1987
  • There are more oxygen ions than hydrogen ions in the auroral field zone. We consider both analytic and numerical simulation study of the heating of hydrogen and oxygen ions by auroral electrons. With the low drift speed of electron beams, the ion-ion hybrid wave becomes unstable instead of the lower hydrid wave so that a preferential heating of oxygen ions occurs.

  • PDF

Thermal Characteristics of Hybrid Solar Receiver using a Solar and Combustion heating (태양열과 가스 연소열을 적용한 복합 태양열 흡수기의 열특성 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Yoon, Hwan-Ki;Yu, Chang-Kyun;Lee, Sang-Nam
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.33-38
    • /
    • 2006
  • The Dish/Stirling system with the Stirling engine is currently used to convert solar energy directly to electrical energy. Successful operation of dish/Stirling system is supported by hybrid system, which will allow continuous operation driven by solar and combustion heating. The hybrid Receiver has to be provided with an additional combustion system. The heat pipe receiver and conbustion system were manufactured and tested for thermal characteristics of receiver. Maximum temperature difference along the heat pipe surface is $200^{\circ}C$. Emission measurements showed low NOx values of 28 to 46 ppm and very high CO values of 18 to 201 ppm.

  • PDF

Bonding Behavior of Carbon Black/Nylon 66 Hybrid Nanofiber Webs via Microwave Heating (카본블랙/나일론 66 혼합 나노섬유웹의 마이크로파에 의한 접착거동)

  • Shin, Dong-Ho;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.114-117
    • /
    • 2003
  • Conventional heating the heat source cause the molecules to react from the surface toward the center so that successive layers of molecules heat in turn. The product surfaces may be in danger of over heating by the time heat penetrates the material. Microwave, however, produce a volume heating effect. All molecules are set in action at the same time. It also evens temperature gradients and offers other important benefits such as selective heating. (omitted)

  • PDF

Unidirectional Sintering in LTCC Substrate (LTCC 기판의 일 방향 소결)

  • Sun Yong-Bin;Ahn Ju-Hwan;Kim Seuk-Buom
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.37-41
    • /
    • 2004
  • As mobile communication devices use wide bands for large data transmission, Low Temperature Co-fired Ceramic(LTCC) has been a candidate for module substrate, for it provides better electrical properties and enables various embedded passive devices compared to conventional PCB. The LTCC, however, has applied in limited area because of non-uniform shrinkage. Hybrid heating was developed to raise sample temperature uniformly in a short period of time This leads to unidirectional sintering which enables sample to be sintered layer by layer from the bottom, resulting in more stable shape of interconnection at the top surface of the sample than conventional electric furnace heating. When sintering properties of substrate and electrical/mechanical properties of interconnection were compared, hybrid heating showed possibility to be applicable to substrate miniaturization and interconnection densification superior to electric furnace heating.

  • PDF

Study on the Performance Characteristics of Hybrid Solar Heating System during Spring Season (봄철 태양열 하이브리드 시스템의 성능특성 연구)

  • Pyo, Jong-Hyun;Kim, Won-Seok;Cho, Hong-Hyun;Park, Cha-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.296-303
    • /
    • 2010
  • An experimental study was carried out to investigate performance characteristics of the hybrid solar system during spring season. The system operating condition, each load, and heat pump performance were analyzed with the cloud cover. As a results, the collector heat, solar fraction, and hot water load were decreased with a rise of the cloud. The heating load was considerably effected by the ambient temperature regardless of the cloud cover. Besides, the temperature of hot water increased with the solar radiation. The COP of the heat pump was significantly influenced by the ambient temperature, that was 2.09~2.46 for gray day and 1.94~2.71 for fair day, respectively.

Thermal Performance Analysis of Renewable Hybrid heat Supply System for Zero Carbon Green Home of Apartment (공동주택의 제로카본 그린홈을 위한 신재생에너지 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.451-456
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000 kacal/hr, a evacuated tubular solar collector 3.74 $m^2$ of aperture area at the $20^{\circ}$ install angle, a 0.3 $m^3$ hot water storage tank, a 0.15 $m^3$ hot water storage tank for space heating. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

  • PDF

A Study on the Performance Evaluation of Hybrid Energy System with Geothermal and Solar Heat Sources (지열-태양열원 복합시스템의 성능평가에 관한 연구)

  • Hwang In-Ju;Woo Nam-Sub;Lee Hong-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • The present study concerns the annual performance evaluation of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of the residential buildings. The hybrid energy system consists of ground source heat pump of 2 RT for cooling, solar collectors of $4.8m^2$, storage tank of 250 liters and gas fired backup boiler of 11.6 kW. The averaged coefficients of performance of geothermal heat pump system during cooling and heating seasons are measured as 4.1 and 3.5, respectively. Also solar fraction for hot water is measured as 35 percent. Overall, the results shows that the hybrid-renewable energy system satisfactorily operated under all climatic conditions.