• Title/Summary/Keyword: Hybrid grid

Search Result 361, Processing Time 0.026 seconds

Numerical calculation of Laminar flow in a Square Duct of 90° Bend (정사각형 단면을 갖는 90° 곡관의 층류유동 계산)

  • Kim H. T.;Kim J. J.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • A FA-FD hybrid method, developed for solving three-dimensional incompressible Navier-Stokes equations, is applied to calculate three-dimensional laminar flows through a square duct with a 90° bend. The method discretizes the convective terms in the primary flow direction with 3rd-order upwind finite-differences and the convective and diffusive terms in the transverse directions with the two-dimensional finite analytic method. The non-staggered grid system is used and the pressure-velocity coupling is achieved by a global iteration procedure based on the PISO algorithm. Detailed comparisons between the computed solutions and the available experimental data are given mainly for the velocity distributions at cross-sections in a 90° bend of a square duct with both fully developed and developing entry flows. Although the computational result shows generally a good agreement with the experimental data, there are some significant discrepancies underlining the necessity of more accurate numerical methods as well as reliable experimental data for their validation.

  • PDF

The Numerical Simulation of the Pressure wave for G7 Test Train in the Tunnel (G7 시제 차량의 터널내부 압력파에 대한 수치 해석)

  • 권혁빈;김태윤;권재현;이동호;김문상
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • A numerical simulation has been performed to estimate the transient pressure variation in the tunnel when G7 test train passes through the test tunnel in the Kyoeng-Bu high-speed railway. A modified patched grid scheme is developed to handle the relative motion between a train and a tunnel. Also, a hybrid dimensional approach is proposed to calculate the train-tunnel interaction problem efficiently. An axi-symmetric unsteady Euler solve using the Roe's FDS is used for analyzing a complicated pressure field in tunnel during the test train is passing through the tunnel. Usually, this complex phenomenon depends ell the train speed, train length, tunnel length, blockage ratio between train and tunnel cross-sectional area, relative position between train and tunnel, etc. Therefore, numerical simulation should be done carefully in consideration of these factors. Numerical results in this study would be good guidance to make test plans, test equipments selection and to decide their measuring locations. They will also supply important information to the pressurization equipment for high-speed train.

Effect of the Velocity Suppression Techniques for a Mushy Solidification on Steady-state Mushy Region (머시응고에 대한 속도감쇠 기법이 정상상태 머시영역에 미치는 영향)

  • Kim, Woo-Seung;Kim, Deok-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1657-1668
    • /
    • 1998
  • In the analysis of a mushy solidification system with natural convection using a fixed grid method, the enthalpy method has been used to account for the release of latent heat. The variable viscosity, Darcy source, and hybrid methods have been employed for the velocity suppression in a mushy region. The choice of the values of solid viscosity and permeability constant in conjunction with the Darcy source term plays an important role in forming the location and shape of the phase boundaries. In this work the effects of these major parameters related to steady-state behavior in the system of mushy solidification are investigated through a simple test problem. The effective specific heat based on the spatial gradients of the enthalpy and temperature is adopted for the treatment of the release of latent heat. The effects of the Prandtl and Rayleigh numbers on the shape of mushy region are examined using the hybrid method.

Development of Hybrid Fuel Cell UPS System (하이브리드 연료전지 UPS 시스템 개발)

  • Hyun, Deok-Su;Jang, Min-Ho;Kim, Tae-Sin;Oh, Se-Woong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.235-235
    • /
    • 2009
  • 본 연구는 친환경 신새생 에너지를 이용한 전력 시스템을 개발함으로써 전력 IT인 Smart Grid 기술 활용과 더불어 예기치 못한 정전으로부터 중요한 전자 장비를 보호하는 UPS 기능을 갖는 친환경 3.0kW급 하이브리드 연료전지 UPS 시스템을 개발하는 것이다. 이를 위하여 시뮬레이션 기법을 이용하여 소형 경량화에 따른 구성 부품 배치 합리화 및 발생열 최적화 설계를 도출하였으며, 연료전지용 장수명 밀폐형 Ni-MH전지, 고효율 전력변환기, 하이브리드 PMS의 설계 및 제작과 개발된 3kW급 하이브리드 연료전지 UPS 시스템 기능 및 성능 평가를 공인 기관에서 검증받았다. 본 연구를 통하여 개발된 연료전지용 장수명 100Ah급 밀폐형 Ni-MH전지는 밀폐화와 더불어 장수명화 및 저온 방전 특성이 우수한 뿐만 아니라 KS규격을 모두 만족하였으며, 내구성도 DOD100%에서 1,093cycle의 결과를 얻을 수 있었다. 또한, 전지 설계 및 제작 기술뿐만 아니라 양산화 관련 기술들이 개발되어 향후 고용량, 고출력, 장수명의 축전지가 필요로 하는 분야에 적용될 수 있는 기반이 마련되었다. 또한 고효율 전력 변환기 및 연료전지과 축전지를 조절하는 PMS을 탑재한 소형 경량화 된 친환경 IT제품의 이미지를 구현하였다.

  • PDF

Numerical Studies of Supersonic Planar Mixing and Turbulent Combustion using a Detached Eddy Simulation (DES) Model

  • Vyasaprasath, Krithika;Oh, Sejong;Kim, Kui-Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.560-570
    • /
    • 2015
  • We present a simulation of a hybrid Reynolds-averaged Navier Stokes / Large Eddy Simulation (RANS/LES) based on detached eddy simulation (DES) for a Burrows and Kurkov supersonic planar mixing experiment. The preliminary simulation results are checked in order to validate the numerical computing capability of the current code. Mesh refinement studies are performed to identify the minimum grid size required to accurately capture the flow physics. A detailed investigation of the turbulence/chemistry interaction is carried out for a nine species 19-step hydrogen-air reaction mechanism. In contrast to the instantaneous value, the simulated time-averaged result inside the reactive shear layer underpredicts the maximum rise in $H_2O$ concentration and total temperature relative to the experimental data. The reason for the discrepancy is described in detail. Combustion parameters such as OH mass fraction, flame index, scalar dissipation rate, and mixture fraction are analyzed in order to study the flame structure.

Hardware-Based Implementation of a PIDR Controller for Single-Phase Power Factor Correction

  • Le, Dinh Vuong;Park, Sang-Min;Yu, In-Keun;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • In a single-phase power factor correction (PFC), the standard cascaded control algorithm using a proportional-integral-derivative (PID) controller has two main drawbacks: an inability to track sinusoidal current reference and low harmonic compensation capability. These drawbacks cause poor power factor and high harmonics in grid current. To improve these drawbacks, this paper uses a proportional-integral-derivative-resonant (PIDR) controller which combines a type-III PID with proportional-resonant (PR) controllers in the PFC. Based on a small signal model of the PFC, the type-III PID controller was implemented taking into account the bandwidth and phase margin of the PFC system. To adopt the PR controllers, the spectrum of inductor current of the PFC was analyzed in frequency domain. The hybrid PIDR controller were simulated using PSCAD/EMTDC and implemented on a 3 kW PFC prototype hardware. The performance results of the hybrid PIDR controller were compared with those of an individual type-III PID controller. Both controllers were implemented successfully in the single-phase PFC. The total harmonic distortion of the proposed controller were much better than those of the individual type-III PID controller.

A novel SARMA-ANN hybrid model for global solar radiation forecasting

  • Srivastava, Rachit;Tiwaria, A.N.;Giri, V.K.
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.131-143
    • /
    • 2019
  • Global Solar Radiation (GSR) is the key element for performance estimation of any Solar Power Plant (SPP). Its forecasting may help in estimation of power production from a SPP well in advance, and may also render help in optimal use of this power. Seasonal Auto-Regressive Moving Average (SARMA) and Artificial Neural Network (ANN) models are combined in order to develop a hybrid model (SARMA-ANN) conceiving the characteristics of both linear and non-linear prediction models. This developed model has been used for prediction of GSR at Gorakhpur, situated in the northern region of India. The proposed model is beneficial for the univariate forecasting. Along with this model, we have also used Auto-Regressive Moving Average (ARMA), SARMA, ANN based models for 1 - 6 day-ahead forecasting of GSR on hourly basis. It has been found that the proposed model presents least RMSE (Root Mean Square Error) and produces best forecasting results among all the models considered in the present study. As an application, the comparison between the forecasted one and the energy produced by the grid connected PV plant installed on the parking stands of the University shows the superiority of the proposed model.

Hybrid High-efficiency Synchronous Converter using Si IGBT and SiC MOSFET

  • Il Yang;Woo-Joon Kim;Tuan-Vu Le;Seong-Mi Park;Sung-Jun Park;Ancheng Liu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.967-976
    • /
    • 2023
  • Currently, with the thriving development in the field of solar energy, the widespread adoption of solar grid-connected power conversion systems is rapidly expanding. As the market continues to grow, the efficiency of solar power conversion systems is steadily increasing, while prices are rapidly decreasing. Photovoltaic panels often produce low output voltages, and Boost converters are commonly employed to elevate and stabilize these voltages. They are also utilized for implementing Maximum Power Point Tracking (MPPT), ensuring the full utilization of solar power generation. Recently, synchronous control techniques have been introduced, using controllable switching devices like Si IGBT or SiC MOSFET to replace the diodes in the original circuits. However, this has raised concerns related to costs. This paper offers a compromise solution, considering both the performance and economic factors of the converter. It proposes a hybrid high-efficiency synchronous converter structure that combines Si IGBT and SiC MOSFET. Additionally, the proposed topology has been practically implemented and tested, with results confirming its feasibility and cost-effectiveness.

Estimation of Monthly Precipitation in North Korea Using PRISM and Digital Elevation Model (PRISM과 상세 지형정보에 근거한 북한지역 강수량 분포 추정)

  • Kim, Dae-Jun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • While high-definition precipitation maps with a 270 m spatial resolution are available for South Korea, there is little information on geospatial availability of precipitation water for the famine - plagued North Korea. The restricted data access and sparse observations prohibit application of the widely used PRISM (Parameter-elevation Regressions on Independent Slopes Model) to North Korea for fine-resolution mapping of precipitation. A hybrid method which complements the PRISM grid with a sub-grid scale elevation function is suggested to estimate precipitation for remote areas with little data such as North Korea. The fine scale elevation - precipitation regressions for four sloping aspects were derived from 546 observation points in South Korea. A 'virtual' elevation surface at a 270 m grid spacing was generated by inverse distance weighed averaging of the station elevations of 78 KMA (Korea Meteorological Administration) synoptic stations. A 'real' elevation surface made up from both 78 synoptic and 468 automated weather stations (AWS) was also generated and subtracted from the virtual surface to get elevation difference at each point. The same procedure was done for monthly precipitation to get the precipitation difference at each point. A regression analysis was applied to derive the aspect - specific coefficient of precipitation change with a unit increase in elevation. The elevation difference between 'virtual' and 'real' surface was calculated for each 270m grid points across North Korea and the regression coefficients were applied to obtain the precipitation corrections for the PRISM grid. The correction terms are now added to the PRISM generated low resolution (~2.4 km) precipitation map to produce the 270 m high resolution map compatible with those available for South Korea. According to the final product, the spatial average precipitation for entire territory of North Korea is 1,196 mm for a climatological normal year (1971-2000) with standard deviation of 298 mm.

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.