• Title/Summary/Keyword: Hybrid generator

Search Result 259, Processing Time 0.028 seconds

The Evaluation of an Electric Hybrid Power System for the High Endurance Drone (장기체공 드론용 하이브리드 전기 추진시스템 성능 평가)

  • Gang, Byeong Gyu;Kim, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.539-544
    • /
    • 2022
  • This research shows the test performance of a 6 kW-scale hybrid electric power system for the high endurance drone. The power system is composed of a two-stroke reciprocal engine, starter-generator and battery, and they are integrated as one power unit. The engine is designed to provide the house for holding the starter-generator at the end of a crankshaft in turn the engine and starter-generator can maintain the same speed during the operational period. In this way, the generated power is readily controlled by just manipulating an engine throttle movement. Moreover, the starter-generator can initiate an engine operation with an aid of battery power until the combustion process becomes stabilized. In consequence, integration mechanism between an engine and generator is simplified, which results in weight reduction achieved. The duty of back-up battery is to provide a starting power to generator via a system controller in addition to covering momentarily power shortage. Therefore, the electric power system is vindicated to provide 6 kW power through a ground test.

Power Quality Analysis of Wind-Diesel Hybrid Generation System Installation Area (복합발전 풍력-디젤 하이브리드 시스템 설치 지역의 전력품질 분석)

  • An, Hae-Joon;Kim, Hyun-Goo;Kim, Seok-Woo;Ko, Seok-Whan;Jang, Gil-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.539-541
    • /
    • 2009
  • A severely cold weather condition of King Sejong Station, Antarctica becomes a very severe condition for an installation/operation of wind generation system. When the existing wind generation system works, it may cause a damage and destruction of wind generation system and can bring about big problems in terms of the power quality. Accordingly, it is essential to obtain technologies for the installation and operation of small wind generation system for the polar region's wind generation, and to assess and demonstrate the performance in the severely-cold environment and the polar wind generation system's development, supplementation, alteration. Also, as the available power of King Sejong Station, Antarctica, the diesel generator has been mainly used, and the wind generator has been used in the hybrid form. Wind generation and diesel generation has the different load following control each other. In the wind generation, the generated power very rapidly changes according to the change of the velocity of the wind. On the other hand, the diesel generation shows very gentle change in the velocity of output. Therefore, the study is intended to analyze the 10kw small wind generator-diesel generator's power quality of King Sejong Station, Antarctica, which is the hybrid system installation area.

  • PDF

Design Characteristics on the Hybrid Power System for Quad-Tilt Prop (쿼드-틸트프롭 하이브리드 동력시스템 설계 특성)

  • Kim, Keunbae;Lee, Bohwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1196-1199
    • /
    • 2017
  • A series-hybrid power system was designed for quad-tilt prop UAV and the characteristics was analysed. The power system consists of a 4.5kW rotary engine-generator and a li-battery as power sources, a power controller manages the overall power and supplies to the vehicle system. The output power of the engine is to be matched with the generator performance considering mechanical driving loss and generating efficiency, and also loss for charging and discharging of the battery energy. It is applied that the constant speed operation of the engine-generator to minimize overall fuel consumption by integrating the generating power and the battery energy, consequentially the battery capacity and characteristics could be important factors for improvement of the system efficiency.

  • PDF

Evaluation of Solar-Diesel-Battery Hybrid System for Off-Grid Rural Electrification in Myanmar

  • Win, Phyu Phyu;Jin, Young Gyu;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2138-2145
    • /
    • 2017
  • A hybrid system combining renewable technologies with diesel generators is a promising solution for rural electrification. Myanmar has many renewable energy resources, and many regions that cannot be supplied with electricity from the main grid. Therefore, in this study, we select a village in Myanmar, which is located far away from the substation, and evaluate the economic feasibility of a hybrid system for the village considering the specific local conditions and resource availability. We consider a hybrid system composed of a photovoltaic source, diesel generator, battery energy storage system, and converter. The load profiles of the household data from the village, and the solar radiation profiles are determined. The advantages of the hybrid system, in terms of cost, reliability, and environmental effects are analyzed through simulations using commercial software. The simulation results show that, for the selected village in Myanmar, a hybrid system with battery energy storage can reduce the cost and greenhouse gas emissions while maintaining reliability. We also obtain an optimized design in terms of the component size for the selected hybrid system with battery energy storage.

The study of Shaft Generators and Diesel Generators for parallel operation of control system (샤프트 발전기와 디젤 발전기의 병렬운전 제어시스템 설계에 대한 연구)

  • Hwang, Bo-Young;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.318-321
    • /
    • 2012
  • This paper presents hybrid power system that consist of Shaft Generators and Diesel Generators, connection of Generator and Bus bar, operating method of Generator and design considerations of control system through parallel operation.

  • PDF

Comparisons on Maximum Power Point Tracking Control of a Thermoelectric Generator on Vehicles (차량 적용을 위한 열전 소자 최대 전력 추종 제어 비교)

  • Jang, Yohan;Choung, Seunghoon;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.159-166
    • /
    • 2021
  • This study compares the maximum power point tracking (MPPT) control methods of a thermoelectric generator on vehicles. The researchers conduct comparisons on five different MPPT methods, including a fractional open circuit voltage method, a perturbation and observation (P&O) method, an incremental conductance method, a linear extrapolation-based MPPT (LEMPPT) method, and a LEMPPT/P&O hybrid method. These five MPPT methods are theoretically analyzed in detail, and the comparisons are conducted through MATLAB/Simulink simulation results. The comparison outcomes reveal that linear MPPT methods, including LEMPPT and LEMPPT/P&O hybrid methods, are more suitable for a thermoelectric generator on vehicles than the other MPPT methods examined in this work.

Maintaining the close-to-critical state of thorium fuel core of hybrid reactor operated under control by D-T fusion neutron flux

  • Bedenko, Sergey V.;Arzhannikov, Andrey V.;Lutsik, Igor O.;Prikhodko, Vadim V.;Shmakov, Vladimir M.;Modestov, Dmitry G.;Karengin, Alexander G.;Shamanin, Igor V.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1736-1746
    • /
    • 2021
  • The results of full-scale numerical experiments of a hybrid thorium-containing fuel cell facility operating in a close-to-critical state due to a controlled source of fusion neutrons are discussed in this work. The facility under study was a complex consisting of two blocks. The first block was based on the concept of a high-temperature gas-cooled thorium reactor core. The second block was an axially symmetrical extended plasma generator of additional neutrons that was placed in the near-axial zone of the facility blanket. The calculated models of the blanket and the plasma generator of D-T neutrons created within the work allowed for research of the neutronic parameters of the facility in stationary and pulse-periodic operation modes. This research will make it possible to construct a safe facility and investigate the properties of thorium fuel, which can be continuously used in the epithermal spectrum of the considered hybrid fusion-fission reactor.

A Study on control mode of hybrid multi-function welder (하이브리드 다기능 용접기 제어 모드에 관한 연구)

  • Kim, Jin-Seok;Choi, Jae-Ho;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.439-445
    • /
    • 2013
  • This study is on the system that can integrate generator and charger to use as a welder and generator for need. Specifically, it was hybrid generator consisted with select switch to use generator controller and multiple function welder, that function were auto-stopping generator when generator power finish to recharge in recharger battery and Co2 MMA TIG MIG MAG are devide depend on supplying gas. This control system of voltage, high-frequency, motor and gas valve was implemented in order to improve the performance and convenience of existing welders to choose only one or two at a time.

Development of Efficient Operational Mode for Wind-Diesel Hybrid System

  • Asghar, Furqan;Kim, Se-Yoon;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.554-561
    • /
    • 2014
  • Hybrid wind Diesel stand-alone power systems are considered economically viable and effective to create balance between production and load demand in remote areas where the wind speed is considerable for electric generation, and also, electric energy is not easily available from the grid. In Wind diesel hybrid system, the wind energy system is the main constitute and diesel system forms the back up. This type of hybrid power system saves fuel cost, improves power capacity to meet the increasing demand and maintains the continuity of supply in the system. Problem we face in this system is that even after producing enough power through wind turbine system, considerable portion of this power needs to be dumped due to short term oversupply of power and to maintain the frequency within close tolerances. As a result remaining portion of total energy supplied comes from the diesel generator to overcome the temporal energy shortage. This scenario decreases the overall efficiency of hybrid power system. In this study, efficient Simulink modeling for wind-diesel hybrid system is proposed and some simulations study is carried out to verify the feasibility of the proposed scheme.

Pre-Feasibility Study of Stand-Alone Hybrid Energy System for Applications in a Lab (실험실용 독립형 하이브리드 에너지 시스템의 가능성 연구)

  • Li, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.627-631
    • /
    • 2009
  • As renewable and sustainable energy, solar energy and wind energy have advantages in reducing the pollution sources. The paper presents a hybrid system which includes the solar cell and the wind generator. HOMER provides a platform to design and simulate the power system and then to choose the optimization results. This paper simulates with the HOMER and performs a pre-feasibility study of stand-alone hybrid energy systems for applications in a lab.